Asymptotic normality of Gini correlation in high dimension with applications to the K-sample problem

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
Yongli Sang, Xin Dang
{"title":"Asymptotic normality of Gini correlation in high dimension with applications to the K-sample problem","authors":"Yongli Sang, Xin Dang","doi":"10.1214/23-ejs2165","DOIUrl":null,"url":null,"abstract":"The categorical Gini correlation proposed by Dang et al. [7] is a dependence measure to characterize independence between categorical and numerical variables. The asymptotic distributions of the sample correlation under dependence and independence have been established when the dimension of the numerical variable is fixed. However, its asymptotic behavior for high dimensional data has not been explored. In this paper, we develop the central limit theorem for the Gini correlation in the more realistic setting where the dimensionality of the numerical variable is diverging. We then construct a powerful and consistent test for the K-sample problem based on the asymptotic normality. The proposed test not only avoids computation burden but also gains power over the permutation procedure. Simulation studies and real data illustrations show that the proposed test is more competitive to existing methods across a broad range of realistic situations, especially in unbalanced cases.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":"159 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-ejs2165","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

The categorical Gini correlation proposed by Dang et al. [7] is a dependence measure to characterize independence between categorical and numerical variables. The asymptotic distributions of the sample correlation under dependence and independence have been established when the dimension of the numerical variable is fixed. However, its asymptotic behavior for high dimensional data has not been explored. In this paper, we develop the central limit theorem for the Gini correlation in the more realistic setting where the dimensionality of the numerical variable is diverging. We then construct a powerful and consistent test for the K-sample problem based on the asymptotic normality. The proposed test not only avoids computation burden but also gains power over the permutation procedure. Simulation studies and real data illustrations show that the proposed test is more competitive to existing methods across a broad range of realistic situations, especially in unbalanced cases.
高维基尼相关的渐近正态性及其在k -样本问题中的应用
Dang等人[7]提出的分类基尼相关是描述分类变量和数值变量之间独立性的依赖度量。在数值变量维数一定的情况下,建立了样本相关性在依赖和独立条件下的渐近分布。然而,对于高维数据,它的渐近行为还没有被探索。在本文中,我们在数值变量维数发散的更现实的情况下,发展了基尼相关的中心极限定理。然后,我们基于渐近正态性构造了k -样本问题的强大且一致的检验。该方法不仅避免了计算量的增加,而且大大优于排列过程。仿真研究和实际数据插图表明,在广泛的现实情况下,特别是在不平衡情况下,所提出的测试比现有方法更具竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Journal of Statistics
Electronic Journal of Statistics STATISTICS & PROBABILITY-
CiteScore
1.80
自引率
9.10%
发文量
100
审稿时长
3 months
期刊介绍: The Electronic Journal of Statistics (EJS) publishes research articles and short notes on theoretical, computational and applied statistics. The journal is open access. Articles are refereed and are held to the same standard as articles in other IMS journals. Articles become publicly available shortly after they are accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信