Identification of Fe-bearing phases in the as-cast microstructure of AA6026 alloy and their evolution during homogenization treatment

T. Radetic, M. Popovic, M. Novakovic, V. Rajic, E. Romhanji
{"title":"Identification of Fe-bearing phases in the as-cast microstructure of AA6026 alloy and their evolution during homogenization treatment","authors":"T. Radetic, M. Popovic, M. Novakovic, V. Rajic, E. Romhanji","doi":"10.2298/jmmb230611028r","DOIUrl":null,"url":null,"abstract":"The Fe-bearing intermetallic phases present in the as-cast state of an AA6026 alloy and their evolution during homogenization treatments at 480-550?C were studied by optical microscopy, SEM, and TEM techniques combined with EDS analysis. Besides the ?- Al(Fe,Mn)Si phase of dendritic morphology, two types of plate-like Fe-bearing microconstituents were revealed in the microstructure of the as-cast alloy. The EDS microanalysis and electron diffraction showed that one set of platelets represents just thin sections of ?-Al(Fe,Mn)Si microconstituent. The other set of plate-like microconstituents was identified as a tetragonal, silicon-rich ?-Al4(Fe,Mn)Si2 phase. The formation of the ?- Al4(Fe,Mn)Si2 phase has been attributed to the chemical composition of the alloy. During homogenization, metastable ?-Al4(Fe,Mn)Si2 transformed into the ?-Al(Fe,Mn)Si phase and fragmented. The dendritic ?-Al(Fe,Mn)Si microconstituents underwent fragmentation as well. However, whereas ?-Al(Fe,Mn)Si microconstituents preserve b.c.c. crystal lattice throughout the process, the product of the transformation of the ?-Al4(Fe,Mn)Si2 phase exhibited primitive cubic lattice.","PeriodicalId":16479,"journal":{"name":"Journal of Mining and Metallurgy, Section B","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining and Metallurgy, Section B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/jmmb230611028r","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Fe-bearing intermetallic phases present in the as-cast state of an AA6026 alloy and their evolution during homogenization treatments at 480-550?C were studied by optical microscopy, SEM, and TEM techniques combined with EDS analysis. Besides the ?- Al(Fe,Mn)Si phase of dendritic morphology, two types of plate-like Fe-bearing microconstituents were revealed in the microstructure of the as-cast alloy. The EDS microanalysis and electron diffraction showed that one set of platelets represents just thin sections of ?-Al(Fe,Mn)Si microconstituent. The other set of plate-like microconstituents was identified as a tetragonal, silicon-rich ?-Al4(Fe,Mn)Si2 phase. The formation of the ?- Al4(Fe,Mn)Si2 phase has been attributed to the chemical composition of the alloy. During homogenization, metastable ?-Al4(Fe,Mn)Si2 transformed into the ?-Al(Fe,Mn)Si phase and fragmented. The dendritic ?-Al(Fe,Mn)Si microconstituents underwent fragmentation as well. However, whereas ?-Al(Fe,Mn)Si microconstituents preserve b.c.c. crystal lattice throughout the process, the product of the transformation of the ?-Al4(Fe,Mn)Si2 phase exhibited primitive cubic lattice.
AA6026合金铸态组织中含铁相的识别及其在均匀化处理过程中的演变
AA6026合金铸态含铁金属间相及其在480 ~ 550℃均匀化过程中的演变利用光学显微镜、扫描电镜和透射电镜结合能谱分析对C进行了研究。铸态合金组织中除了枝晶形态的- Al(Fe,Mn)Si相外,还存在两种片状含铁显微成分。能谱分析和电子衍射表明,一组血小板仅代表了-Al(Fe,Mn)Si微组分的薄片。另一组板状微组分被确定为四方的富硅?-Al4(Fe,Mn)Si2相。- Al4(Fe,Mn)Si2相的形成归因于合金的化学成分。在均匀化过程中,亚稳的?-Al4(Fe,Mn)Si2转变为?-Al(Fe,Mn)Si相并破碎。枝晶al (Fe,Mn)Si微组分也发生了断裂。然而,-Al(Fe,Mn)Si微组分在整个过程中保持了b.c.c晶格,而-Al4(Fe,Mn)Si2相的转变产物呈现出原始的立方晶格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信