Dynamical property of hyperspace on uniform space

IF 2 3区 数学 Q1 MATHEMATICS
Zhanjiang Ji
{"title":"Dynamical property of hyperspace on uniform space","authors":"Zhanjiang Ji","doi":"10.1515/dema-2023-0264","DOIUrl":null,"url":null,"abstract":"Abstract First, we introduce the concepts of equicontinuity, expansivity , ergodic shadowing property, and chain transitivity in uniform space. Second, we study the dynamical properties of equicontinuity, expansivity , ergodic shadowing property, and chain transitivity in the hyperspace of uniform space. Let <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>X</m:mi> <m:mo>,</m:mo> <m:mi>μ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> \\left(X,\\mu ) be a uniform space, <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>C</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>X</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:msup> <m:mrow> <m:mi>C</m:mi> </m:mrow> <m:mrow> <m:mi>μ</m:mi> </m:mrow> </m:msup> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> \\left(C\\left(X),{C}^{\\mu }) be a hyperspace of <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>X</m:mi> <m:mo>,</m:mo> <m:mi>μ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> \\left(X,\\mu ) , and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>f</m:mi> <m:mo>:</m:mo> <m:mi>X</m:mi> <m:mo>→</m:mo> <m:mi>X</m:mi> </m:math> f:X\\to X be uniformly continuous. By using the relationship between original space and hyperspace, we obtain the following results: (a) the map <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>f</m:mi> </m:math> f is equicontinous if and only if the induced map <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi>C</m:mi> </m:mrow> <m:mrow> <m:mi>f</m:mi> </m:mrow> </m:msup> </m:math> {C}^{f} is equicontinous; (b) if the induced map <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi>C</m:mi> </m:mrow> <m:mrow> <m:mi>f</m:mi> </m:mrow> </m:msup> </m:math> {C}^{f} is expansive, then the map <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>f</m:mi> </m:math> f is expansive; (c) if the induced map <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi>C</m:mi> </m:mrow> <m:mrow> <m:mi>f</m:mi> </m:mrow> </m:msup> </m:math> {C}^{f} has ergodic shadowing property, then the map <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>f</m:mi> </m:math> f has ergodic shadowing property; (d) if the induced map <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi>C</m:mi> </m:mrow> <m:mrow> <m:mi>f</m:mi> </m:mrow> </m:msup> </m:math> {C}^{f} is chain transitive, then the map <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>f</m:mi> </m:math> f is chain transitive. In addition, we also study the topological conjugate invariance of <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>G</m:mi> <m:mo>,</m:mo> <m:mi>h</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> \\left(G,h) -shadowing property in metric <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>G</m:mi> </m:math> G - space and prove that the map <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>S</m:mi> </m:math> S has <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>G</m:mi> <m:mo>,</m:mo> <m:mi>h</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> \\left(G,h) -shadowing property if and only if the map <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>T</m:mi> </m:math> T has <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>G</m:mi> <m:mo>,</m:mo> <m:mi>h</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> \\left(G,h) -shadowing property. These results generalize the conclusions of equicontinuity, expansivity, ergodic shadowing property, and chain transitivity in hyperspace.","PeriodicalId":10995,"journal":{"name":"Demonstratio Mathematica","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Demonstratio Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/dema-2023-0264","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract First, we introduce the concepts of equicontinuity, expansivity , ergodic shadowing property, and chain transitivity in uniform space. Second, we study the dynamical properties of equicontinuity, expansivity , ergodic shadowing property, and chain transitivity in the hyperspace of uniform space. Let ( X , μ ) \left(X,\mu ) be a uniform space, ( C ( X ) , C μ ) \left(C\left(X),{C}^{\mu }) be a hyperspace of ( X , μ ) \left(X,\mu ) , and f : X X f:X\to X be uniformly continuous. By using the relationship between original space and hyperspace, we obtain the following results: (a) the map f f is equicontinous if and only if the induced map C f {C}^{f} is equicontinous; (b) if the induced map C f {C}^{f} is expansive, then the map f f is expansive; (c) if the induced map C f {C}^{f} has ergodic shadowing property, then the map f f has ergodic shadowing property; (d) if the induced map C f {C}^{f} is chain transitive, then the map f f is chain transitive. In addition, we also study the topological conjugate invariance of ( G , h ) \left(G,h) -shadowing property in metric G G - space and prove that the map S S has ( G , h ) \left(G,h) -shadowing property if and only if the map T T has ( G , h ) \left(G,h) -shadowing property. These results generalize the conclusions of equicontinuity, expansivity, ergodic shadowing property, and chain transitivity in hyperspace.
均匀空间上超空间的动力学性质
首先,我们引入了均匀空间中的等连续性、扩张性、遍历阴影性和链传递性等概念。其次,研究了一致空间的超空间的等连续性、扩张性、遍历阴影性和链传递性的动力学性质。设(X, μ) \left (X, \mu)是一致空间,(C (X),C μ) \left (C \left (X),{C}^ {\mu)是(X, μ)}\left (X, \mu)的超空间,f:X→X f:X \to X是一致连续的。利用原始空间与超空间的关系,我们得到了以下结果:(a)映射f f是等连续的当且仅当诱导映射C f {C}^{f}是等连续的;(b)若诱导映射C f {C}^{f}是可扩张的,则映射f f是可扩张的;(c)若诱导映射c f {c} ^{f}具有遍历阴影性质,则映射f f具有遍历阴影性质;(d)如果诱导映射C f {C}^{f}是链传递的,则映射f f是链传递的。此外,我们还研究了(G,h) \left (G,h)在测度G -空间中的拓扑共轭不变性,并证明了映射S S具有(G,h) \left (G,h)阴影性当且仅当映射T T具有(G,h) \left (G,h)阴影性。这些结果推广了超空间中的等连续性、扩张性、遍历阴影性和链传递性等结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
5.00%
发文量
37
审稿时长
35 weeks
期刊介绍: Demonstratio Mathematica publishes original and significant research on topics related to functional analysis and approximation theory. Please note that submissions related to other areas of mathematical research will no longer be accepted by the journal. The potential topics include (but are not limited to): -Approximation theory and iteration methods- Fixed point theory and methods of computing fixed points- Functional, ordinary and partial differential equations- Nonsmooth analysis, variational analysis and convex analysis- Optimization theory, variational inequalities and complementarity problems- For more detailed list of the potential topics please refer to Instruction for Authors. The journal considers submissions of different types of articles. "Research Articles" are focused on fundamental theoretical aspects, as well as on significant applications in science, engineering etc. “Rapid Communications” are intended to present information of exceptional novelty and exciting results of significant interest to the readers. “Review articles” and “Commentaries”, which present the existing literature on the specific topic from new perspectives, are welcome as well.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信