Research on NLP Based Automatic Summarization Generation Method for Medical Texts

{"title":"Research on NLP Based Automatic Summarization Generation Method for Medical Texts","authors":"","doi":"10.23977/acss.2023.070903","DOIUrl":null,"url":null,"abstract":"The fundamental concept underpinning text summarization technology revolves around the capacity to encapsulate the original information into a succinct form, thus equipping individuals to promptly extract essential content from vast data repositories and liberating users from the cumbersome task of processing extensive textual material. In recent years, the exponential proliferation of data in biomedical literature, patient case records, and healthcare documentation, has presented a pressing challenge. This research undertakes the integration of Natural Language Processing (NLP)-related technologies into the domain of medical text summarization. It puts forth a novel solution for generative automatic summarization, with a specific focus on enhancing the model's proficiency in assimilating the semantic nuances inherent in biomedical texts. The methodology incorporates within existing text summarization frameworks to optimize the model's efficacy in handling biomedical data. The empirical findings presented in this study attest to the remarkable precision of the sentence similarity calculation method introduced herein. In a comparative analysis against four alternative methodologies, this approach achieves a high accuracy rate of 90.6%. This outcome highlights the superior predictive performance of the sentence integration similarity calculation method proposed in this research.","PeriodicalId":495216,"journal":{"name":"Advances in computer, signals and systems","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in computer, signals and systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23977/acss.2023.070903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The fundamental concept underpinning text summarization technology revolves around the capacity to encapsulate the original information into a succinct form, thus equipping individuals to promptly extract essential content from vast data repositories and liberating users from the cumbersome task of processing extensive textual material. In recent years, the exponential proliferation of data in biomedical literature, patient case records, and healthcare documentation, has presented a pressing challenge. This research undertakes the integration of Natural Language Processing (NLP)-related technologies into the domain of medical text summarization. It puts forth a novel solution for generative automatic summarization, with a specific focus on enhancing the model's proficiency in assimilating the semantic nuances inherent in biomedical texts. The methodology incorporates within existing text summarization frameworks to optimize the model's efficacy in handling biomedical data. The empirical findings presented in this study attest to the remarkable precision of the sentence similarity calculation method introduced herein. In a comparative analysis against four alternative methodologies, this approach achieves a high accuracy rate of 90.6%. This outcome highlights the superior predictive performance of the sentence integration similarity calculation method proposed in this research.
基于自然语言处理的医学文本自动摘要生成方法研究
支撑文本摘要技术的基本概念围绕着将原始信息封装为简洁形式的能力,从而使个人能够迅速从庞大的数据存储库中提取重要内容,并将用户从处理大量文本材料的繁琐任务中解放出来。近年来,生物医学文献、患者病例记录和医疗保健文档中的数据呈指数级增长,提出了一个紧迫的挑战。本研究将自然语言处理(NLP)相关技术整合到医学文本摘要领域。它提出了一种新的生成式自动摘要解决方案,特别注重提高模型在吸收生物医学文本中固有的语义细微差别方面的熟练程度。该方法结合了现有的文本摘要框架,以优化模型在处理生物医学数据方面的功效。本研究的实证结果证明本文提出的句子相似度计算方法具有显著的精度。在与四种替代方法的对比分析中,该方法的准确率达到了90.6%。这一结果凸显了本研究提出的句子整合相似度计算方法的优越预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信