{"title":"Enhanced electrochemical performance of manganese oxide nanocomposites for supercapacitor application","authors":"","doi":"10.56042/ijct.v30i5.5206","DOIUrl":null,"url":null,"abstract":"Manganese oxide (MO) has been synthesised by chemical co-precipitation method and it was characterised for its functional group, phase structure, particle size and morphology by using FTIR, XRD, SEM and TEM. Additionally, its electrochemical properties like cyclic voltammetry (CV), galvanostatic charge/ discharge and electrochemical impedance spectroscopy (EIS) are recorded. The specific capacitance of the prepared manganese oxide is found to be 116 F/g at current density of 1 A/g. To augment its capacitance value, it was doped with multi-walled carbon nanotube (MWCNT) and poly(3,4 ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and their electrochemical performance are recorded. By doping MWCNT and PEDOT:PSS over MO, a high specific capacitance of 537 F/g at a current density of 1 A/g with 97% capacitance retention and coulombic efficiency of 98% over 10,000 cycles at a current density of 5 A/g is obtained. All these results demonstrates that MO/MWCNT/PEDOT:PSS is a promising electrode material for supercapacitor application.","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":"20 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Chemical Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56042/ijct.v30i5.5206","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Manganese oxide (MO) has been synthesised by chemical co-precipitation method and it was characterised for its functional group, phase structure, particle size and morphology by using FTIR, XRD, SEM and TEM. Additionally, its electrochemical properties like cyclic voltammetry (CV), galvanostatic charge/ discharge and electrochemical impedance spectroscopy (EIS) are recorded. The specific capacitance of the prepared manganese oxide is found to be 116 F/g at current density of 1 A/g. To augment its capacitance value, it was doped with multi-walled carbon nanotube (MWCNT) and poly(3,4 ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and their electrochemical performance are recorded. By doping MWCNT and PEDOT:PSS over MO, a high specific capacitance of 537 F/g at a current density of 1 A/g with 97% capacitance retention and coulombic efficiency of 98% over 10,000 cycles at a current density of 5 A/g is obtained. All these results demonstrates that MO/MWCNT/PEDOT:PSS is a promising electrode material for supercapacitor application.
采用化学共沉淀法合成了氧化锰(MO),并用FTIR、XRD、SEM和TEM对其官能团、相结构、粒度和形貌进行了表征。此外,还记录了其循环伏安(CV)、恒流充放电和电化学阻抗谱(EIS)等电化学性能。在电流密度为1 A/g时,所制备的氧化锰的比电容为116 F/g。为了提高其电容值,将多壁碳纳米管(MWCNT)和聚(3,4乙烯二氧噻吩)聚苯乙烯磺酸盐(PEDOT:PSS)掺杂在其表面,并记录其电化学性能。通过在MO上掺杂MWCNT和PEDOT:PSS,在电流密度为1 a /g时获得了537 F/g的高比电容,在电流密度为5 a /g时获得了97%的电容保持率和98%的库仑效率。这些结果表明,MO/MWCNT/PEDOT:PSS是一种很有前途的超级电容器电极材料。
期刊介绍:
Indian Journal of Chemical Technology has established itself as the leading journal in the exciting field of chemical engineering and technology. It is intended for rapid communication of knowledge and experience to engineers and scientists working in the area of research development or practical application of chemical technology. This bimonthly journal includes novel and original research findings as well as reviews in the areas related to – Chemical Engineering, Catalysis, Leather Processing, Polymerization, Membrane Separation, Pharmaceuticals and Drugs, Agrochemicals, Reaction Engineering, Biochemical Engineering, Petroleum Technology, Corrosion & Metallurgy and Applied Chemistry.