An overview of AC and DC microgrid energy management systems

IF 1.8 Q4 ENERGY & FUELS
AIMS Energy Pub Date : 2023-01-01 DOI:10.3934/energy.2023049
Mohamed G Moh Almihat
{"title":"An overview of AC and DC microgrid energy management systems","authors":"Mohamed G Moh Almihat","doi":"10.3934/energy.2023049","DOIUrl":null,"url":null,"abstract":"<abstract> <p>In 2022, the global electricity consumption was 4,027 billion kWh, steadily increasing over the previous fifty years. Microgrids are required to integrate distributed energy sources (DES) into the utility power grid. They support renewable and nonrenewable distributed generation technologies and provide alternating current (AC) and direct current (DC) power through separate power connections. This paper presents a unified energy management system (EMS) paradigm with protection and control mechanisms, reactive power compensation, and frequency regulation for AC/DC microgrids. Microgrids link local loads to geographically dispersed power sources, allowing them to operate with or without the utility grid. Between 2021 and 2028, the expansion of the world's leading manufacturers will be driven by their commitment to technological advancements, infrastructure improvements, and a stable and secure global power supply. This article discusses iterative, linear, mixed integer linear, stochastic, and predictive microgrid EMS programming techniques. Iterative algorithms minimize the footprints of standalone systems, whereas linear programming optimizes energy management in freestanding hybrid systems with photovoltaic (PV). Mixed-integers linear programming (MILP) is useful for energy management modeling. Management of microgrid energy employs stochastic and robust optimization. Control and predictive modeling (MPC) generates energy management plans for microgrids. Future microgrids may use several AC/DC voltage standards to reduce power conversion stages and improve efficiency. Research into EMS interaction may be intriguing.</p> </abstract>","PeriodicalId":45696,"journal":{"name":"AIMS Energy","volume":"133 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/energy.2023049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

In 2022, the global electricity consumption was 4,027 billion kWh, steadily increasing over the previous fifty years. Microgrids are required to integrate distributed energy sources (DES) into the utility power grid. They support renewable and nonrenewable distributed generation technologies and provide alternating current (AC) and direct current (DC) power through separate power connections. This paper presents a unified energy management system (EMS) paradigm with protection and control mechanisms, reactive power compensation, and frequency regulation for AC/DC microgrids. Microgrids link local loads to geographically dispersed power sources, allowing them to operate with or without the utility grid. Between 2021 and 2028, the expansion of the world's leading manufacturers will be driven by their commitment to technological advancements, infrastructure improvements, and a stable and secure global power supply. This article discusses iterative, linear, mixed integer linear, stochastic, and predictive microgrid EMS programming techniques. Iterative algorithms minimize the footprints of standalone systems, whereas linear programming optimizes energy management in freestanding hybrid systems with photovoltaic (PV). Mixed-integers linear programming (MILP) is useful for energy management modeling. Management of microgrid energy employs stochastic and robust optimization. Control and predictive modeling (MPC) generates energy management plans for microgrids. Future microgrids may use several AC/DC voltage standards to reduce power conversion stages and improve efficiency. Research into EMS interaction may be intriguing.

交流和直流微电网能源管理系统概述
& lt; abstract>2022年,全球用电量为40270亿千瓦时,在过去的50年里稳步增长。微电网需要将分布式能源(DES)整合到公用电网中。它们支持可再生和不可再生分布式发电技术,并通过单独的电源连接提供交流(AC)和直流(DC)电力。本文提出了一种统一的能量管理系统(EMS)模式,包括交流/直流微电网的保护和控制机制、无功补偿和频率调节。微电网将本地负荷与地理上分散的电源连接起来,允许它们在有或没有公用事业电网的情况下运行。在2021年至2028年期间,全球领先制造商的扩张将受到他们对技术进步,基础设施改善以及稳定安全的全球电力供应的承诺的推动。本文讨论了迭代、线性、混合整数线性、随机和预测微电网EMS编程技术。迭代算法最大限度地减少了独立系统的足迹,而线性规划优化了具有光伏(PV)的独立混合系统的能源管理。混合整数线性规划(MILP)在能源管理建模中非常有用。微网能量管理采用随机鲁棒优化。控制和预测建模(MPC)为微电网生成能源管理计划。未来的微电网可能会使用几种交流/直流电压标准来减少功率转换阶段并提高效率。对EMS相互作用的研究可能很有趣。</p>& lt; / abstract>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIMS Energy
AIMS Energy ENERGY & FUELS-
CiteScore
3.80
自引率
11.10%
发文量
34
审稿时长
12 weeks
期刊介绍: AIMS Energy is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in the field of Energy technology and science. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports. AIMS Energy welcomes, but not limited to, the papers from the following topics: · Alternative energy · Bioenergy · Biofuel · Energy conversion · Energy conservation · Energy transformation · Future energy development · Green energy · Power harvesting · Renewable energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信