{"title":"An overview of AC and DC microgrid energy management systems","authors":"Mohamed G Moh Almihat","doi":"10.3934/energy.2023049","DOIUrl":null,"url":null,"abstract":"<abstract> <p>In 2022, the global electricity consumption was 4,027 billion kWh, steadily increasing over the previous fifty years. Microgrids are required to integrate distributed energy sources (DES) into the utility power grid. They support renewable and nonrenewable distributed generation technologies and provide alternating current (AC) and direct current (DC) power through separate power connections. This paper presents a unified energy management system (EMS) paradigm with protection and control mechanisms, reactive power compensation, and frequency regulation for AC/DC microgrids. Microgrids link local loads to geographically dispersed power sources, allowing them to operate with or without the utility grid. Between 2021 and 2028, the expansion of the world's leading manufacturers will be driven by their commitment to technological advancements, infrastructure improvements, and a stable and secure global power supply. This article discusses iterative, linear, mixed integer linear, stochastic, and predictive microgrid EMS programming techniques. Iterative algorithms minimize the footprints of standalone systems, whereas linear programming optimizes energy management in freestanding hybrid systems with photovoltaic (PV). Mixed-integers linear programming (MILP) is useful for energy management modeling. Management of microgrid energy employs stochastic and robust optimization. Control and predictive modeling (MPC) generates energy management plans for microgrids. Future microgrids may use several AC/DC voltage standards to reduce power conversion stages and improve efficiency. Research into EMS interaction may be intriguing.</p> </abstract>","PeriodicalId":45696,"journal":{"name":"AIMS Energy","volume":"133 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/energy.2023049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
In 2022, the global electricity consumption was 4,027 billion kWh, steadily increasing over the previous fifty years. Microgrids are required to integrate distributed energy sources (DES) into the utility power grid. They support renewable and nonrenewable distributed generation technologies and provide alternating current (AC) and direct current (DC) power through separate power connections. This paper presents a unified energy management system (EMS) paradigm with protection and control mechanisms, reactive power compensation, and frequency regulation for AC/DC microgrids. Microgrids link local loads to geographically dispersed power sources, allowing them to operate with or without the utility grid. Between 2021 and 2028, the expansion of the world's leading manufacturers will be driven by their commitment to technological advancements, infrastructure improvements, and a stable and secure global power supply. This article discusses iterative, linear, mixed integer linear, stochastic, and predictive microgrid EMS programming techniques. Iterative algorithms minimize the footprints of standalone systems, whereas linear programming optimizes energy management in freestanding hybrid systems with photovoltaic (PV). Mixed-integers linear programming (MILP) is useful for energy management modeling. Management of microgrid energy employs stochastic and robust optimization. Control and predictive modeling (MPC) generates energy management plans for microgrids. Future microgrids may use several AC/DC voltage standards to reduce power conversion stages and improve efficiency. Research into EMS interaction may be intriguing.
期刊介绍:
AIMS Energy is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in the field of Energy technology and science. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports. AIMS Energy welcomes, but not limited to, the papers from the following topics: · Alternative energy · Bioenergy · Biofuel · Energy conversion · Energy conservation · Energy transformation · Future energy development · Green energy · Power harvesting · Renewable energy