Bio-inspired dry adhesive pads using multi-walled carbon nanotube/polydimethylsiloxane composites for efficient wafer transfer robot arms in smart factories†

IF 3.2 3区 工程技术 Q2 CHEMISTRY, PHYSICAL
Bom Lee, Young Chun Ko, Simon Kim, Su Eon Lee, Ho Jun Jin, Dong Joon Chang, Min-Ho Park and Bong Hoon Kim
{"title":"Bio-inspired dry adhesive pads using multi-walled carbon nanotube/polydimethylsiloxane composites for efficient wafer transfer robot arms in smart factories†","authors":"Bom Lee, Young Chun Ko, Simon Kim, Su Eon Lee, Ho Jun Jin, Dong Joon Chang, Min-Ho Park and Bong Hoon Kim","doi":"10.1039/D3ME00126A","DOIUrl":null,"url":null,"abstract":"<p >The development of dry adhesive pads (DAPs) is essential to prevent wafer detachment from high-speed wafer-transfer robot arms. However, polydimethylsiloxane (PDMS)-based DAPs, which are insulating elastomers, generate residual charges inside DAPs. These cause charge accumulation and electrostatic interactions between the DAP and the wafer interface. Furthermore, at a high processing temperature of &gt;300 °C, the adhesive and mechanical strengths of conventional DAPs are degraded because of their low thermal and mechanical stability. In this study, we developed bio-inspired DAPs (BDAPs) with various shapes (hole, cylinder, and line patterns) and different contact areas (20, 40, and 60%) through systematic investigations to determine optimized patterns and shapes for different motions. Additionally, we fabricated a multi-walled carbon nanotube (MWCNT)/PDMS composite-based BDAP (c-BDAP), which exhibited high heat resistance and high electrical conductivity. The conductivity of c-BDAP was 6.16 × 10<small><sup>−3</sup></small> S m<small><sup>−1</sup></small>, and it had a weight loss of ∼4% at 300 °C after 1 h. Our findings can inspire the development of low-cost and high-performance c-BDAPs, which are reliable for various robot arm movements.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Design & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/me/d3me00126a","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The development of dry adhesive pads (DAPs) is essential to prevent wafer detachment from high-speed wafer-transfer robot arms. However, polydimethylsiloxane (PDMS)-based DAPs, which are insulating elastomers, generate residual charges inside DAPs. These cause charge accumulation and electrostatic interactions between the DAP and the wafer interface. Furthermore, at a high processing temperature of >300 °C, the adhesive and mechanical strengths of conventional DAPs are degraded because of their low thermal and mechanical stability. In this study, we developed bio-inspired DAPs (BDAPs) with various shapes (hole, cylinder, and line patterns) and different contact areas (20, 40, and 60%) through systematic investigations to determine optimized patterns and shapes for different motions. Additionally, we fabricated a multi-walled carbon nanotube (MWCNT)/PDMS composite-based BDAP (c-BDAP), which exhibited high heat resistance and high electrical conductivity. The conductivity of c-BDAP was 6.16 × 10−3 S m−1, and it had a weight loss of ∼4% at 300 °C after 1 h. Our findings can inspire the development of low-cost and high-performance c-BDAPs, which are reliable for various robot arm movements.

Abstract Image

采用多壁碳纳米管/聚二甲基硅氧烷复合材料的仿生干胶垫,用于智能工厂中高效的晶圆转移机器人手臂
我们报告了具有各种形状和接触区域的仿生干胶垫(BDAPs),针对各种机器人手臂运动进行了优化。此外,基于MWCNT/PDMS复合材料的BDAP (c-BDAP)具有优异的耐热性和导电性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Systems Design & Engineering
Molecular Systems Design & Engineering Engineering-Biomedical Engineering
CiteScore
6.40
自引率
2.80%
发文量
144
期刊介绍: Molecular Systems Design & Engineering provides a hub for cutting-edge research into how understanding of molecular properties, behaviour and interactions can be used to design and assemble better materials, systems, and processes to achieve specific functions. These may have applications of technological significance and help address global challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信