{"title":"Learning GNSS Positioning Corrections for Smartphones Using Graph Convolution Neural Networks","authors":"Adyasha Mohanty, Grace Gao","doi":"10.33012/navi.622","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> Smartphone receivers comprise approximately 1.5 billion global navigation satellite system receivers currently manufactured worldwide. Smartphone receivers provide measurements with lower signal levels and higher noise than commercial receivers. Because of constraints on size, weight, power consumption, and cost, it is challenging to achieve accurate positioning with these receivers, particularly in urban environments. Traditionally, global positioning system measurements are processed via model-based approaches, such as weighted least-squares and Kalman filtering approaches. While model-based approaches can provide meter-level positioning accuracy in a postprocessing manner, these approaches require strong assumptions on the corresponding noise models and require manual tuning of parameters such as covariances. In contrast, learning-based approaches have been proposed that make fewer assumptions about the data structure and can accurately model environment-specific errors. However, these approaches provide lower accuracy than model-based methods and are sensitive to initialization. In this paper, we propose a hybrid framework for learning position correction, which corresponds to the offset between the true receiver position and the estimated position. For a learning-based approach, we propose a graph convolution neural network (GCNN) that can learn different graph structures with multi-constellation and multi-frequency signals. For better initialization of the GCNN, we use a Kalman filter to estimate a coarse receiver position. We then use this coarse receiver position to condition the input features to the graph. We test our proposed approach on real-world data sets from the Google Smartphone Decimeter Challenge and show improved positioning performance over model-based methods such as the weighted least-squares and Kalman filter methods.","PeriodicalId":56075,"journal":{"name":"Navigation-Journal of the Institute of Navigation","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Navigation-Journal of the Institute of Navigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33012/navi.622","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Smartphone receivers comprise approximately 1.5 billion global navigation satellite system receivers currently manufactured worldwide. Smartphone receivers provide measurements with lower signal levels and higher noise than commercial receivers. Because of constraints on size, weight, power consumption, and cost, it is challenging to achieve accurate positioning with these receivers, particularly in urban environments. Traditionally, global positioning system measurements are processed via model-based approaches, such as weighted least-squares and Kalman filtering approaches. While model-based approaches can provide meter-level positioning accuracy in a postprocessing manner, these approaches require strong assumptions on the corresponding noise models and require manual tuning of parameters such as covariances. In contrast, learning-based approaches have been proposed that make fewer assumptions about the data structure and can accurately model environment-specific errors. However, these approaches provide lower accuracy than model-based methods and are sensitive to initialization. In this paper, we propose a hybrid framework for learning position correction, which corresponds to the offset between the true receiver position and the estimated position. For a learning-based approach, we propose a graph convolution neural network (GCNN) that can learn different graph structures with multi-constellation and multi-frequency signals. For better initialization of the GCNN, we use a Kalman filter to estimate a coarse receiver position. We then use this coarse receiver position to condition the input features to the graph. We test our proposed approach on real-world data sets from the Google Smartphone Decimeter Challenge and show improved positioning performance over model-based methods such as the weighted least-squares and Kalman filter methods.
期刊介绍:
NAVIGATION is a quarterly journal published by The Institute of Navigation. The journal publishes original, peer-reviewed articles on all areas related to the science, engineering and art of Positioning, Navigation and Timing (PNT) covering land (including indoor use), sea, air and space applications. PNT technologies of interest encompass navigation satellite systems (both global and regional), inertial navigation, electro-optical systems including LiDAR and imaging sensors, and radio-frequency ranging and timing systems, including those using signals of opportunity from communication systems and other non-traditional PNT sources. Articles about PNT algorithms and methods, such as for error characterization and mitigation, integrity analysis, PNT signal processing and multi-sensor integration, are welcome. The journal also accepts articles on non-traditional applications of PNT systems, including remote sensing of the Earth’s surface or atmosphere, as well as selected historical and survey articles.