A Convenient Inclusion of Inhomogeneous Boundary Conditions in Minimal Residual Methods

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
Rob Stevenson
{"title":"A Convenient Inclusion of Inhomogeneous Boundary Conditions in Minimal Residual Methods","authors":"Rob Stevenson","doi":"10.1515/cmam-2023-0072","DOIUrl":null,"url":null,"abstract":"Abstract Inhomogeneous essential boundary conditions can be appended to a well-posed PDE to lead to a combined variational formulation. The domain of the corresponding operator is a Sobolev space on the domain Ω on which the PDE is posed, whereas the codomain is a Cartesian product of spaces, among them fractional Sobolev spaces of functions on <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo rspace=\"0em\">∂</m:mo> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:mrow> </m:math> \\partial\\Omega . In this paper, easily implementable minimal residual discretizations are constructed which yield quasi-optimal approximation from the employed trial space, in which the evaluation of fractional Sobolev norms is fully avoided.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"17 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cmam-2023-0072","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Inhomogeneous essential boundary conditions can be appended to a well-posed PDE to lead to a combined variational formulation. The domain of the corresponding operator is a Sobolev space on the domain Ω on which the PDE is posed, whereas the codomain is a Cartesian product of spaces, among them fractional Sobolev spaces of functions on Ω \partial\Omega . In this paper, easily implementable minimal residual discretizations are constructed which yield quasi-optimal approximation from the employed trial space, in which the evaluation of fractional Sobolev norms is fully avoided.
最小残差法中一种方便的非齐次边界条件包含
非齐次本质边界条件可以附加到一个适定偏微分方程上,从而得到一个组合变分公式。对应算子的域是在PDE被放置的域Ω上的Sobolev空间,而上域是空间的笛卡尔积,其中包括∂Ω \partial\Omega上函数的分数Sobolev空间。本文构造了一种易于实现的最小残差离散化方法,该方法从所采用的试验空间中得到拟最优逼近,其中完全避免了分数阶Sobolev范数的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
7.70%
发文量
54
期刊介绍: The highly selective international mathematical journal Computational Methods in Applied Mathematics (CMAM) considers original mathematical contributions to computational methods and numerical analysis with applications mainly related to PDEs. CMAM seeks to be interdisciplinary while retaining the common thread of numerical analysis, it is intended to be readily readable and meant for a wide circle of researchers in applied mathematics. The journal is published by De Gruyter on behalf of the Institute of Mathematics of the National Academy of Science of Belarus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信