{"title":"Application of Frequency-Domain Noise-Source Model to Simulation of Time-Synchronized Near-Magnetic-Field Distribution above a Power Circuit","authors":"Keita Takahashi, Takaaki Ibuchi, Tsuyoshi Funaki","doi":"10.1541/ieejjia.23005684","DOIUrl":null,"url":null,"abstract":"The high-electromagnetic-interference (EMI)-noise area in a power circuit should be clarified when designing a low-EMI-noise power converter. For example, shielding of the power circuit prevents the EMI noise propagation to other circuits via near field couplings. It is important to know the high-EMI-noise area which should be shielded. The EMI noise distribution can be visualized by measuring the near-magnetic-field distribution above the power circuit. However, we cannot measure the near-magnetic-field distribution if there is not enough space for scanning a magnetic field probe between the power circuit and other circuits. Therefore, we propose to adopt a three-dimensional electromagnetic simulation for acquiring the near-magnetic-field distribution above a power circuit. In this paper, we study the validity of the frequency-domain noise-source model for the simulation of the near-magnetic field distribution. We evaluate the near-magnetic-field distribution maps for turn-on and turn-off of the transistor, respectively. The high-EMI-noise area differs depending on frequencies. The high-EMI-noise area for turn-on is different from that for turn-off. We have clarified that each high-EMI-noise area can be predicted by the simulation.","PeriodicalId":45552,"journal":{"name":"IEEJ Journal of Industry Applications","volume":"501 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEJ Journal of Industry Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1541/ieejjia.23005684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The high-electromagnetic-interference (EMI)-noise area in a power circuit should be clarified when designing a low-EMI-noise power converter. For example, shielding of the power circuit prevents the EMI noise propagation to other circuits via near field couplings. It is important to know the high-EMI-noise area which should be shielded. The EMI noise distribution can be visualized by measuring the near-magnetic-field distribution above the power circuit. However, we cannot measure the near-magnetic-field distribution if there is not enough space for scanning a magnetic field probe between the power circuit and other circuits. Therefore, we propose to adopt a three-dimensional electromagnetic simulation for acquiring the near-magnetic-field distribution above a power circuit. In this paper, we study the validity of the frequency-domain noise-source model for the simulation of the near-magnetic field distribution. We evaluate the near-magnetic-field distribution maps for turn-on and turn-off of the transistor, respectively. The high-EMI-noise area differs depending on frequencies. The high-EMI-noise area for turn-on is different from that for turn-off. We have clarified that each high-EMI-noise area can be predicted by the simulation.
期刊介绍:
IEEJ Journal of Industry Applications: Power Electronics - AC/AC Conversion and DC/DC Conversion, - Power Semiconductor Devices and their Application, - Inverters and Rectifiers, - Power Supply System and its Application, - Power Electronics Modeling, Simulation, Design and Control, - Renewable Electric Energy Conversion Industrial System - Mechatronics and Robotics, - Industrial Instrumentation and Control, - Sensing, Actuation, Motion Control and Haptics, - Factory Automation and Production Facility Control, - Automobile Technology and ITS Technology, - Information Oriented Industrial System Electrical Machinery and Apparatus - Electric Machines Design, Modeling and Control, - Rotating Motor Drives and Linear Motor Drives, - Electric Vehicles and Hybrid Electric Vehicles, - Electric Railway and Traction Control, - Magnetic Levitation and Magnetic Bearing, - Static Apparatus and Superconductive Application Publishing Ethics of IEEJ Journal of Industry Applications: Code of Ethics on IEEJ IEEJ Journal of Industry Applications is a peer-reviewed journal of IEEJ (the Institute of Electrical Engineers of Japan). The publication of IEEJ Journal of Industry Applications is an essential building article in the development of a coherent and respected network of knowledge. It is a direct reflection of the quality of the work of the authors and the institutions that support them. IEEJ Journal of Industry Applications has "Peer-reviewed articles support." It is therefore important to agree upon standards of expected ethical behavior for all parties involved in the act of publishing: the author, the journal editor, the peer reviewer and IEEJ (the Institute of Electrical Engineers of Japan).