{"title":"Application of Frequency-Domain Noise-Source Model to Simulation of Time-Synchronized Near-Magnetic-Field Distribution above a Power Circuit","authors":"Keita Takahashi, Takaaki Ibuchi, Tsuyoshi Funaki","doi":"10.1541/ieejjia.23005684","DOIUrl":null,"url":null,"abstract":"The high-electromagnetic-interference (EMI)-noise area in a power circuit should be clarified when designing a low-EMI-noise power converter. For example, shielding of the power circuit prevents the EMI noise propagation to other circuits via near field couplings. It is important to know the high-EMI-noise area which should be shielded. The EMI noise distribution can be visualized by measuring the near-magnetic-field distribution above the power circuit. However, we cannot measure the near-magnetic-field distribution if there is not enough space for scanning a magnetic field probe between the power circuit and other circuits. Therefore, we propose to adopt a three-dimensional electromagnetic simulation for acquiring the near-magnetic-field distribution above a power circuit. In this paper, we study the validity of the frequency-domain noise-source model for the simulation of the near-magnetic field distribution. We evaluate the near-magnetic-field distribution maps for turn-on and turn-off of the transistor, respectively. The high-EMI-noise area differs depending on frequencies. The high-EMI-noise area for turn-on is different from that for turn-off. We have clarified that each high-EMI-noise area can be predicted by the simulation.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1541/ieejjia.23005684","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The high-electromagnetic-interference (EMI)-noise area in a power circuit should be clarified when designing a low-EMI-noise power converter. For example, shielding of the power circuit prevents the EMI noise propagation to other circuits via near field couplings. It is important to know the high-EMI-noise area which should be shielded. The EMI noise distribution can be visualized by measuring the near-magnetic-field distribution above the power circuit. However, we cannot measure the near-magnetic-field distribution if there is not enough space for scanning a magnetic field probe between the power circuit and other circuits. Therefore, we propose to adopt a three-dimensional electromagnetic simulation for acquiring the near-magnetic-field distribution above a power circuit. In this paper, we study the validity of the frequency-domain noise-source model for the simulation of the near-magnetic field distribution. We evaluate the near-magnetic-field distribution maps for turn-on and turn-off of the transistor, respectively. The high-EMI-noise area differs depending on frequencies. The high-EMI-noise area for turn-on is different from that for turn-off. We have clarified that each high-EMI-noise area can be predicted by the simulation.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.