Analysis of a Large Scale Cold Air Weather Process in China during January 2021

Baojun Wu
{"title":"Analysis of a Large Scale Cold Air Weather Process in China during January 2021","authors":"Baojun Wu","doi":"10.4236/gep.2023.119005","DOIUrl":null,"url":null,"abstract":"This study uses data provided by the National Meteorological Information Center of China, Japan Meteorological Agency (JMA) and National Oceanic Atmospheric Administration (NOAA) Physical Sciences Laboratory of the USA to analyze a cold air weather process at the beginning of January 2021. Synoptic analysis is mainly used to summarize synoptic laws or patterns based on observational data, and describe and infer weather processes. The main conclusions are as follows: The cold air travels south along the northwest path, affecting most of China. During the cold wave process, the first cold air is weak, which has a certain cooling effect on northern China. The second cold air was guided by the low vortex, the accumulation in the transverse groove of Mongolia was strengthened, and the cooling effect was significant. The southwest jet showed an increasing trend, and the water vapor transport conditions were good. However, due to the relatively gentle southern branch system, the warm and humid air flow was weak and the precipitation level was small. The purpose of this study is to better understand a large-scale cold air weather process in January 2021 in China.","PeriodicalId":15859,"journal":{"name":"Journal of Geoscience and Environment Protection","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geoscience and Environment Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/gep.2023.119005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study uses data provided by the National Meteorological Information Center of China, Japan Meteorological Agency (JMA) and National Oceanic Atmospheric Administration (NOAA) Physical Sciences Laboratory of the USA to analyze a cold air weather process at the beginning of January 2021. Synoptic analysis is mainly used to summarize synoptic laws or patterns based on observational data, and describe and infer weather processes. The main conclusions are as follows: The cold air travels south along the northwest path, affecting most of China. During the cold wave process, the first cold air is weak, which has a certain cooling effect on northern China. The second cold air was guided by the low vortex, the accumulation in the transverse groove of Mongolia was strengthened, and the cooling effect was significant. The southwest jet showed an increasing trend, and the water vapor transport conditions were good. However, due to the relatively gentle southern branch system, the warm and humid air flow was weak and the precipitation level was small. The purpose of this study is to better understand a large-scale cold air weather process in January 2021 in China.
2021年1月中国一次大尺度冷空气天气过程分析
本研究利用中国国家气象信息中心、日本气象厅(JMA)和美国国家海洋大气管理局(NOAA)物理科学实验室提供的数据,分析了2021年1月初的一次冷空气天气过程。天气分析主要是根据观测资料总结天气规律或模式,描述和推断天气过程。主要结论如下:冷空气沿西北路径南下,影响了中国大部分地区;在寒潮过程中,第一股冷空气较弱,对华北地区有一定的降温作用。第二次冷空气受低涡引导,蒙古横槽内积累增强,降温效果显著。西南急流呈增加趋势,水汽输送条件良好。但由于南支系统相对温和,暖湿气流偏弱,降水偏少。本研究的目的是更好地了解2021年1月中国大尺度冷空气天气过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信