A system of equations involving the fractional p-Laplacian and doubly critical nonlinearities

IF 2.1 2区 数学 Q1 MATHEMATICS
Mousomi Bhakta, Kanishka Perera, Firoj Sk
{"title":"A system of equations involving the fractional <i>p</i>-Laplacian and doubly critical nonlinearities","authors":"Mousomi Bhakta, Kanishka Perera, Firoj Sk","doi":"10.1515/ans-2023-0103","DOIUrl":null,"url":null,"abstract":"Abstract This article deals with existence of solutions to the following fractional <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>p</m:mi> </m:math> p -Laplacian system of equations: <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:mfenced open=\"{\" close=\"\"> <m:mrow> <m:mtable displaystyle=\"true\"> <m:mtr> <m:mtd columnalign=\"left\"> <m:msup> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mo>−</m:mo> <m:msub> <m:mrow> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mrow> <m:mi>p</m:mi> </m:mrow> </m:msub> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> </m:msup> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:msup> <m:mrow> <m:mo>∣</m:mo> <m:mi>u</m:mi> <m:mo>∣</m:mo> </m:mrow> <m:mrow> <m:msubsup> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msubsup> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi>u</m:mi> <m:mo>+</m:mo> <m:mfrac> <m:mrow> <m:mi>γ</m:mi> <m:mi>α</m:mi> </m:mrow> <m:mrow> <m:msubsup> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msubsup> </m:mrow> </m:mfrac> <m:msup> <m:mrow> <m:mo>∣</m:mo> <m:mi>u</m:mi> <m:mo>∣</m:mo> </m:mrow> <m:mrow> <m:mi>α</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi>u</m:mi> <m:msup> <m:mrow> <m:mo>∣</m:mo> <m:mi>v</m:mi> <m:mo>∣</m:mo> </m:mrow> <m:mrow> <m:mi>β</m:mi> </m:mrow> </m:msup> <m:mspace width=\"0.33em\" /> <m:mspace width=\"0.33em\" /> <m:mstyle> <m:mspace width=\"0.1em\" /> <m:mtext>in</m:mtext> <m:mspace width=\"0.1em\" /> </m:mstyle> <m:mspace width=\"0.33em\" /> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>,</m:mo> <m:mspace width=\"1.0em\" /> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"left\"> <m:msup> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mo>−</m:mo> <m:msub> <m:mrow> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mrow> <m:mi>p</m:mi> </m:mrow> </m:msub> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> </m:msup> <m:mi>v</m:mi> <m:mo>=</m:mo> <m:msup> <m:mrow> <m:mo>∣</m:mo> <m:mi>v</m:mi> <m:mo>∣</m:mo> </m:mrow> <m:mrow> <m:msubsup> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msubsup> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi>v</m:mi> <m:mo>+</m:mo> <m:mfrac> <m:mrow> <m:mi>γ</m:mi> <m:mi>β</m:mi> </m:mrow> <m:mrow> <m:msubsup> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msubsup> </m:mrow> </m:mfrac> <m:msup> <m:mrow> <m:mo>∣</m:mo> <m:mi>v</m:mi> <m:mo>∣</m:mo> </m:mrow> <m:mrow> <m:mi>β</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi>v</m:mi> <m:msup> <m:mrow> <m:mo>∣</m:mo> <m:mi>u</m:mi> <m:mo>∣</m:mo> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:msup> <m:mspace width=\"0.33em\" /> <m:mspace width=\"0.33em\" /> <m:mstyle> <m:mspace width=\"0.1em\" /> <m:mtext>in</m:mtext> <m:mspace width=\"0.1em\" /> </m:mstyle> <m:mspace width=\"0.33em\" /> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>,</m:mo> <m:mspace width=\"1.0em\" /> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:mfenced> </m:math> \\left\\{\\begin{array}{l}{\\left(-{\\Delta }_{p})}^{s}u={| u| }^{{p}_{s}^{* }-2}u+\\frac{\\gamma \\alpha }{{p}_{s}^{* }}{| u| }^{\\alpha -2}u{| v| }^{\\beta }\\hspace{0.33em}\\hspace{0.33em}\\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}\\Omega ,\\hspace{1.0em}\\\\ {\\left(-{\\Delta }_{p})}^{s}v={| v| }^{{p}_{s}^{* }-2}v+\\frac{\\gamma \\beta }{{p}_{s}^{* }}{| v| }^{\\beta -2}v{| u| }^{\\alpha }\\hspace{0.33em}\\hspace{0.33em}\\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}\\Omega ,\\hspace{1.0em}\\end{array}\\right. where <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>s</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> s\\in \\left(0,1) , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>p</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi>∞</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> p\\in \\left(1,\\infty ) with <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>N</m:mi> <m:mo>&gt;</m:mo> <m:mi>s</m:mi> <m:mi>p</m:mi> </m:math> N\\gt sp , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> <m:mo>&gt;</m:mo> <m:mn>1</m:mn> </m:math> \\alpha ,\\beta \\gt 1 such that <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>α</m:mi> <m:mo>+</m:mo> <m:mi>β</m:mi> <m:mo>=</m:mo> <m:msubsup> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msubsup> <m:mo>≔</m:mo> <m:mfrac> <m:mrow> <m:mi>N</m:mi> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> <m:mo>−</m:mo> <m:mi>s</m:mi> <m:mi>p</m:mi> </m:mrow> </m:mfrac> </m:math> \\alpha +\\beta ={p}_{s}^{* }:= \\frac{Np}{N-sp} and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>=</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:math> \\Omega ={{\\mathbb{R}}}^{N} or smooth bounded domains in <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:math> {{\\mathbb{R}}}^{N} . When <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>=</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:math> \\Omega ={{\\mathbb{R}}}^{N} and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>γ</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:math> \\gamma =1 , we show that any ground state solution of the aforementioned system has the form <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>λ</m:mi> <m:mi>U</m:mi> <m:mo>,</m:mo> <m:mi>τ</m:mi> <m:mi>λ</m:mi> <m:mi>V</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> \\left(\\lambda U,\\tau \\lambda V) for certain <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>τ</m:mi> <m:mo>&gt;</m:mo> <m:mn>0</m:mn> </m:math> \\tau \\gt 0 and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>U</m:mi> </m:math> U and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>V</m:mi> </m:math> V are two positive ground state solutions of <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mo>−</m:mo> <m:msub> <m:mrow> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mrow> <m:mi>p</m:mi> </m:mrow> </m:msub> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> </m:msup> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:msup> <m:mrow> <m:mo>∣</m:mo> <m:mi>u</m:mi> <m:mo>∣</m:mo> </m:mrow> <m:mrow> <m:msubsup> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msubsup> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi>u</m:mi> </m:math> {\\left(-{\\Delta }_{p})}^{s}u={| u| }^{{p}_{s}^{* }-2}u in <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:math> {{\\mathbb{R}}}^{N} . For all <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>γ</m:mi> <m:mo>&gt;</m:mo> <m:mn>0</m:mn> </m:math> \\gamma \\gt 0 , we establish existence of a positive radial solution to the aforementioned system in balls. When <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>=</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:math> \\Omega ={{\\mathbb{R}}}^{N} , we also establish existence of positive radial solutions to the aforementioned system in various ranges of <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>γ</m:mi> </m:math> \\gamma .","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"39 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ans-2023-0103","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This article deals with existence of solutions to the following fractional p p -Laplacian system of equations: ( Δ p ) s u = u p s * 2 u + γ α p s * u α 2 u v β in Ω , ( Δ p ) s v = v p s * 2 v + γ β p s * v β 2 v u α in Ω , \left\{\begin{array}{l}{\left(-{\Delta }_{p})}^{s}u={| u| }^{{p}_{s}^{* }-2}u+\frac{\gamma \alpha }{{p}_{s}^{* }}{| u| }^{\alpha -2}u{| v| }^{\beta }\hspace{0.33em}\hspace{0.33em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\Omega ,\hspace{1.0em}\\ {\left(-{\Delta }_{p})}^{s}v={| v| }^{{p}_{s}^{* }-2}v+\frac{\gamma \beta }{{p}_{s}^{* }}{| v| }^{\beta -2}v{| u| }^{\alpha }\hspace{0.33em}\hspace{0.33em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\Omega ,\hspace{1.0em}\end{array}\right. where s ( 0 , 1 ) s\in \left(0,1) , p ( 1 , ) p\in \left(1,\infty ) with N > s p N\gt sp , α , β > 1 \alpha ,\beta \gt 1 such that α + β = p s * N p N s p \alpha +\beta ={p}_{s}^{* }:= \frac{Np}{N-sp} and Ω = R N \Omega ={{\mathbb{R}}}^{N} or smooth bounded domains in R N {{\mathbb{R}}}^{N} . When Ω = R N \Omega ={{\mathbb{R}}}^{N} and γ = 1 \gamma =1 , we show that any ground state solution of the aforementioned system has the form ( λ U , τ λ V ) \left(\lambda U,\tau \lambda V) for certain τ > 0 \tau \gt 0 and U U and V V are two positive ground state solutions of ( Δ p ) s u = u p s * 2 u {\left(-{\Delta }_{p})}^{s}u={| u| }^{{p}_{s}^{* }-2}u in R N {{\mathbb{R}}}^{N} . For all γ > 0 \gamma \gt 0 , we establish existence of a positive radial solution to the aforementioned system in balls. When Ω = R N \Omega ={{\mathbb{R}}}^{N} , we also establish existence of positive radial solutions to the aforementioned system in various ranges of γ \gamma .
包含分数阶p-拉普拉斯和双临界非线性的方程组
摘要 本文论述下列分数 p p -拉普拉斯方程组的解的存在性: ( - Δ p ) s u = ∣ u ∣ p s * - 2 u + γ α p s * ∣ u ∣ α - 2 u ∣ v ∣ β in Ω 、 ( - Δ p ) s v = ∣ v ∣ p s * - 2 v + γ β p s * ∣ v ∣ β - 2 v ∣ u ∣ α in Ω 、 \left(-{Delta }_{p})}^{s}u={| u| }^{p}_{s}^{* }-2}u+frac{gamma \alpha }{p}_{s}^{* }}{ u| }^{\alpha -2}u{| v| }^{beta }\hspace{0.33em}\hspace{0.33em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\Omega ,\hspace{1.0em}\ {left(-{\Delta }_{p})}^{s}v={| v| }^{p}_{s}^{* }-2}v+\frac{gamma \beta }{{p}_{s}^{* }}{| v| }^{\beta -2}v{| u| }^{alpha }\hspace{0.33em}\hspace{0.33em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\Omega ,\hspace{1.0em}\end{array}\right.其中 s∈ ( 0 , 1 ) s\in \left(0,1) , p∈ ( 1 , ∞ ) p\in \left(1,\infty ) with N > s p N\gt sp , α , β >;1 \alpha ,\beta 1 such that α + β = p s * ≔ N p N - s p \alpha +\beta ={p}_{s}^{* }:= \frac{Np}{N-sp} 和 Ω = R N \Omega ={{mathbb{R}}}^{N} 或 R N 中的光滑有界域 {{mathbb{R}}}^{N} 。当 Ω = R N \Omega ={{\mathbb{R}}}^{N} 且 γ = 1 \gamma =1 时,我们证明在一定的 τ > 条件下,上述系统的任何基态解都具有 ( λ U , τ λ V ) \left(\lambda U,\tau \lambda V) 的形式;0 \tau \gt 0 且 U U 和 V V 是 ( - Δ p ) s u = ∣ u ∣ p s * - 2 u {\left(-{Delta }_{p})}^{s}u={| u| }^{p}_{s}^{* }-2}u in R N {{\mathbb{R}}}^{N} 的两个正基态解。对于所有 γ > 0 \gamma \gt 0,我们确定了上述系统在球中的正径向解的存在性。当 Ω = R N \Omega ={\mathbb{R}}}^{N} 时,我们也建立了上述系统在不同 γ \gamma 范围内的正径向解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
22
审稿时长
12 months
期刊介绍: Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信