Layer and stable solutions to a nonlocal model

IF 1 3区 数学 Q1 MATHEMATICS
Xiaodong Yan
{"title":"Layer and stable solutions to a nonlocal model","authors":"Xiaodong Yan","doi":"10.3934/cpaa.2023105","DOIUrl":null,"url":null,"abstract":"We study the layer and stable solutions of nonlocal problem $ \\begin{equation*} -\\Delta u+F'(u)\\left( -\\Delta \\right) ^{s}F(u)+G'(u) = 0\\text{ in }\\mathbb{R}^{n} \\end{equation*} $ where $ F\\in C_{{\\text{loc}}}^2( \\mathbb R) $ satisfies $ F(0) = 0 $ and $ G $ is a double well potential. For $ n = 2,s>0 $ and $ n = 3, $ $ s\\geq 1/2, $ we establish the 1-d symmetry of layer solutions for this equation. When $ n = 2 $ and $ F' $ is bounded away from zero, we prove the 1-d symmetry of stable solutions for this equation. Using a different approach, we also prove the 1-d symmetry of stable solutions for$ \\begin{equation*} F'(u)\\left( -\\Delta \\right) ^{s}F(u)+G'(u) = 0\\text{ in }\\mathbb{R}^{2}. \\end{equation*} $","PeriodicalId":10643,"journal":{"name":"Communications on Pure and Applied Analysis","volume":"20 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cpaa.2023105","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the layer and stable solutions of nonlocal problem $ \begin{equation*} -\Delta u+F'(u)\left( -\Delta \right) ^{s}F(u)+G'(u) = 0\text{ in }\mathbb{R}^{n} \end{equation*} $ where $ F\in C_{{\text{loc}}}^2( \mathbb R) $ satisfies $ F(0) = 0 $ and $ G $ is a double well potential. For $ n = 2,s>0 $ and $ n = 3, $ $ s\geq 1/2, $ we establish the 1-d symmetry of layer solutions for this equation. When $ n = 2 $ and $ F' $ is bounded away from zero, we prove the 1-d symmetry of stable solutions for this equation. Using a different approach, we also prove the 1-d symmetry of stable solutions for$ \begin{equation*} F'(u)\left( -\Delta \right) ^{s}F(u)+G'(u) = 0\text{ in }\mathbb{R}^{2}. \end{equation*} $
非局部模型的层和稳定解
研究了非局部问题$ \begin{equation*} -\Delta u+F'(u)\left( -\Delta \right) ^{s}F(u)+G'(u) = 0\text{ in }\mathbb{R}^{n} \end{equation*} $的层解和稳定解,其中$ F\in C_{{\text{loc}}}^2( \mathbb R) $满足$ F(0) = 0 $, $ G $是双井势。对于$ n = 2,s>0 $和$ n = 3, $$ s\geq 1/2, $,我们建立了该方程层解的一维对称性。当$ n = 2 $和$ F' $离零有界时,证明了该方程稳定解的一维对称性。用一种不同的方法,证明了$ \begin{equation*} F'(u)\left( -\Delta \right) ^{s}F(u)+G'(u) = 0\text{ in }\mathbb{R}^{2}. \end{equation*} $
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: CPAA publishes original research papers of the highest quality in all the major areas of analysis and its applications, with a central theme on theoretical and numeric differential equations. Invited expository articles are also published from time to time. It is edited by a group of energetic leaders to guarantee the journal''s highest standard and closest link to the scientific communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信