Implementasi Algoritma Convolutional Neural Network Pada Kendaraan Tanpa Awak Skala Kecil

Muhammad Zacky Asy'ari, Anthony Williams Gouw, Desliong Arjuna Limanjaya
{"title":"Implementasi Algoritma Convolutional Neural Network Pada Kendaraan Tanpa Awak Skala Kecil","authors":"Muhammad Zacky Asy'ari, Anthony Williams Gouw, Desliong Arjuna Limanjaya","doi":"10.35814/asiimetrik.v5i1.4082","DOIUrl":null,"url":null,"abstract":"Autonomous Vehicle is a vehicle capable of navigating the car independently without requiring input from the driver. This research aims to design and manufacture a prototype of an unmanned vehicle that can maneuver across a simple artificial road. This study also aims to analyze the performance of the NVIDIA Jetson Nano in processing deep learning models and driving actuators according to the predictions given by the model. The research stages include designing a prototype, creating an artificial path, taking image data, conducting training, and then implementing the training model on the car prototype. After testing the prototype, the training model made the correct steering angle prediction using epoch 50 with RMSE train and validation, 0.1792 and 0.1896, respectively. NVIDIA Jetson Nano also performs well in computing steering angle predictions with live input from the camera.","PeriodicalId":490621,"journal":{"name":"Jurnal Asiimetrik","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Asiimetrik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35814/asiimetrik.v5i1.4082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Autonomous Vehicle is a vehicle capable of navigating the car independently without requiring input from the driver. This research aims to design and manufacture a prototype of an unmanned vehicle that can maneuver across a simple artificial road. This study also aims to analyze the performance of the NVIDIA Jetson Nano in processing deep learning models and driving actuators according to the predictions given by the model. The research stages include designing a prototype, creating an artificial path, taking image data, conducting training, and then implementing the training model on the car prototype. After testing the prototype, the training model made the correct steering angle prediction using epoch 50 with RMSE train and validation, 0.1792 and 0.1896, respectively. NVIDIA Jetson Nano also performs well in computing steering angle predictions with live input from the camera.
在小型无人飞行器上实现卷积神经网络算法
自动驾驶汽车是一种无需驾驶员输入即可自主驾驶的车辆。本研究旨在设计和制造一种可以在简单的人工道路上机动的无人驾驶车辆的原型。本研究还旨在分析NVIDIA Jetson Nano在处理深度学习模型和根据模型给出的预测驱动致动器方面的性能。研究阶段包括设计原型、创建人工路径、采集图像数据、进行训练,然后在汽车原型上实现训练模型。经过对原型的测试,训练模型使用RMSE训练和验证的epoch 50进行了正确的转向角预测,分别为0.1792和0.1896。NVIDIA Jetson Nano在通过摄像头实时输入计算转向角度预测方面也表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信