Analisis Sentiment Twitter Berbasis Grid Search Algorithm (GSA) Dengan Metode Support Vector Machine (SVM)

Dedi Wirasasmita, Efi Anisa
{"title":"Analisis Sentiment Twitter Berbasis Grid Search Algorithm (GSA) Dengan Metode Support Vector Machine (SVM)","authors":"Dedi Wirasasmita, Efi Anisa","doi":"10.35814/asiimetrik.v5i1.3789","DOIUrl":null,"url":null,"abstract":"Twitter is a social networking service that has undergone tremendous growth and is gaining worldwide popularity at an accelerated rate. Twitter allows for the expression of unbiased thoughts on a variety of issues and can assist businesses in providing public feedback on well-known brands and items. Twitter is having trouble with good and negative answers. Researchers evaluated English-language tweets to determine the proportion of positive and negative replies to popular companies and items. This study will explore Twitter sentiment analysis utilizing the Grid Search Algorithm (GSA) and the support vector machine (SVM) technique. GSA is utilized by the feature selection model to optimize the classification procedure. In this work, training data and testing data are required to do sentiment analysis. Sanders Twitter 0.2 utilizes a dataset consisting of tweets retrieved from Twitter using the search terms @apple, #google, #microsoft, and #twitter. The collected dataset was manually annotated and included 654 negatives, 570 positives, 2503 neutrals, and 1786 irrelevant entries. Data are loaded, tokenized, weighted, preprocessed, filtered, and classified to conduct a sentiment analysis. The application's sentiment analysis achieved a degree of accuracy of up to 79% based on testing. The ratio of neutral and bad tweets on data sandboxes tends to be greater than the percentage of positive tweets, hence optimization rather than accuracy is obtained.","PeriodicalId":490621,"journal":{"name":"Jurnal Asiimetrik","volume":"166 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Asiimetrik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35814/asiimetrik.v5i1.3789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Twitter is a social networking service that has undergone tremendous growth and is gaining worldwide popularity at an accelerated rate. Twitter allows for the expression of unbiased thoughts on a variety of issues and can assist businesses in providing public feedback on well-known brands and items. Twitter is having trouble with good and negative answers. Researchers evaluated English-language tweets to determine the proportion of positive and negative replies to popular companies and items. This study will explore Twitter sentiment analysis utilizing the Grid Search Algorithm (GSA) and the support vector machine (SVM) technique. GSA is utilized by the feature selection model to optimize the classification procedure. In this work, training data and testing data are required to do sentiment analysis. Sanders Twitter 0.2 utilizes a dataset consisting of tweets retrieved from Twitter using the search terms @apple, #google, #microsoft, and #twitter. The collected dataset was manually annotated and included 654 negatives, 570 positives, 2503 neutrals, and 1786 irrelevant entries. Data are loaded, tokenized, weighted, preprocessed, filtered, and classified to conduct a sentiment analysis. The application's sentiment analysis achieved a degree of accuracy of up to 79% based on testing. The ratio of neutral and bad tweets on data sandboxes tends to be greater than the percentage of positive tweets, hence optimization rather than accuracy is obtained.
基于网格搜索算法(GSA)的微博情感分析
Twitter是一种社交网络服务,经历了巨大的增长,并以加速的速度在全球范围内获得普及。Twitter允许对各种问题表达公正的想法,并可以帮助企业提供公众对知名品牌和商品的反馈。推特在正面和负面的回答上遇到了麻烦。研究人员评估了英语推文,以确定对热门公司和商品的正面和负面回复的比例。本研究将探索利用网格搜索算法(GSA)和支持向量机(SVM)技术的Twitter情感分析。特征选择模型利用GSA对分类过程进行优化。在这项工作中,需要训练数据和测试数据来进行情感分析。Sanders Twitter 0.2利用了一个数据集,该数据集由使用搜索词@apple, #谷歌,#microsoft和# Twitter从Twitter检索到的tweet组成。收集的数据集被手工注释,包括654个阴性、570个阳性、2503个中性和1786个不相关条目。数据被加载、标记、加权、预处理、过滤和分类,以进行情感分析。根据测试,该应用程序的情感分析准确率高达79%。在数据沙盒中,中性推文和差推文的比例往往大于正面推文的比例,因此获得的是优化而不是准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信