Numerical Solution of Fractional Order Fredholm Integro-differential Equations by Spectral Method with Fractional Basis Functions

IF 0.8 Q2 MATHEMATICS
Y. Talaei, S. Noeiaghdam, H. Hosseinzadeh
{"title":"Numerical Solution of Fractional Order Fredholm Integro-differential Equations by Spectral Method with Fractional Basis Functions","authors":"Y. Talaei, S. Noeiaghdam, H. Hosseinzadeh","doi":"10.26516/1997-7670.2023.45.89","DOIUrl":null,"url":null,"abstract":"This paper introduces a new numerical technique based on the implicit spectral collocation method and the fractional Chelyshkov basis functions for solving the fractional Fredholm integro-differential equations. The framework of the proposed method is to reduce the problem into a nonlinear system of equations utilizing the spectral collocation method along with the fractional operational integration matrix. The obtained algebraic system is solved using Newton’s iterative method. Convergence analysis of the method is studied. The numerical examples show the efficiency of the method on the problems with non-smooth solutions.","PeriodicalId":42592,"journal":{"name":"Bulletin of Irkutsk State University-Series Mathematics","volume":"16 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Irkutsk State University-Series Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26516/1997-7670.2023.45.89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a new numerical technique based on the implicit spectral collocation method and the fractional Chelyshkov basis functions for solving the fractional Fredholm integro-differential equations. The framework of the proposed method is to reduce the problem into a nonlinear system of equations utilizing the spectral collocation method along with the fractional operational integration matrix. The obtained algebraic system is solved using Newton’s iterative method. Convergence analysis of the method is studied. The numerical examples show the efficiency of the method on the problems with non-smooth solutions.
用分数阶基函数谱法数值解分数阶Fredholm积分微分方程
本文介绍了一种基于隐式谱配点法和分数阶Chelyshkov基函数的分数阶Fredholm积分微分方程求解方法。该方法的框架是利用谱配置法和分数阶运算积分矩阵将问题简化为非线性方程组。用牛顿迭代法求解得到的代数方程组。研究了该方法的收敛性分析。数值算例表明了该方法对非光滑解问题的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
28.60%
发文量
19
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信