On the local fundamental group of the complement of a curve in a normal surface

IF 0.8 3区 数学 Q2 MATHEMATICS
Victor Stepanovich Kulikov
{"title":"On the local fundamental group of the complement of a curve in a normal surface","authors":"Victor Stepanovich Kulikov","doi":"10.4213/im9357e","DOIUrl":null,"url":null,"abstract":"We give a presentation of the fundamental group of the complement of a curve $C$ in its \"tubular\" neighbourhood in a normal surface $S$. The presentation is given in terms of the double weighted dual graph of the resolution of singularities of $C$ (and $S$). This result generalizes the presentation of the fundamental group of the complement of a normal singularity in its neighbourhood given by Mumford in the case, where the dual graph of the resolution is a tree and all exceptional curves of the resolution are rational curves.","PeriodicalId":54910,"journal":{"name":"Izvestiya Mathematics","volume":"80 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4213/im9357e","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We give a presentation of the fundamental group of the complement of a curve $C$ in its "tubular" neighbourhood in a normal surface $S$. The presentation is given in terms of the double weighted dual graph of the resolution of singularities of $C$ (and $S$). This result generalizes the presentation of the fundamental group of the complement of a normal singularity in its neighbourhood given by Mumford in the case, where the dual graph of the resolution is a tree and all exceptional curves of the resolution are rational curves.
法曲面上曲线补的局部基群
给出了法曲面S$上曲线C$在其管状邻域中补的基本群。给出了$C$(和$S$)奇异点解析的双加权对偶图。在分辨率的对偶图为树且分辨率的所有异常曲线为有理曲线的情况下,推广了Mumford给出的邻域正常奇点补的基本群的表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Izvestiya Mathematics
Izvestiya Mathematics 数学-数学
CiteScore
1.30
自引率
0.00%
发文量
30
审稿时长
6-12 weeks
期刊介绍: The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. This publication covers all fields of mathematics, but special attention is given to: Algebra; Mathematical logic; Number theory; Mathematical analysis; Geometry; Topology; Differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信