Improvement of KNN Collaborative Filtering Model in User-based Approach on Anime Recommendation System

Vynska Amalia Permadi, Rezky Putratama Raharjo
{"title":"Improvement of KNN Collaborative Filtering Model in User-based Approach on Anime Recommendation System","authors":"Vynska Amalia Permadi, Rezky Putratama Raharjo","doi":"10.32520/stmsi.v12i2.2473","DOIUrl":null,"url":null,"abstract":"This research aims to resolve the challenge of finding the list of recommendations that correspond to user preferences. The MyAnimeList dataset is utilized for model evaluation, accessible via Kaggle website. The outcome of this study is the development of a recommendation system based on the preferences of other users (user-based model). The suggested solution employs a collaborative filtering model based on the KNN algorithm and weighted attribute. The dataset consisted of 193,272 user ratings on anime, with the following attributes: username, anime_id, my_score, and my_status. As an extension of the KNN collaborative filtering paradigm, the rating value is weighted based on the user’s status. The determination of the weight is based on the responses of 105 respondents to a questionnaire. my_score and my_status values will be combined and adjusted using MinMaxNormalization in addition to being weighted. This work implemented the KNN algorithm with the following k parameter values: 3, 5, 9, 15, 23, 33, and 45. Variations in parameters are utilized to determine the optimal k value to employ in KNN, which uses the Pearson similarity matrix to calculate user similarity values. The model evaluation indicate that the optimal Mean Absolute Error and Root Mean Square Error values at parameter k = 5 are 0.14726 and 0.19855, respectively. This improved model’s findings further demonstrate that KNN collaborative filtering with an additional weighted parameter can predict ratings with stable and generally low error values for all k values.","PeriodicalId":32357,"journal":{"name":"Jurnal Sistem Informasi","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Sistem Informasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32520/stmsi.v12i2.2473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research aims to resolve the challenge of finding the list of recommendations that correspond to user preferences. The MyAnimeList dataset is utilized for model evaluation, accessible via Kaggle website. The outcome of this study is the development of a recommendation system based on the preferences of other users (user-based model). The suggested solution employs a collaborative filtering model based on the KNN algorithm and weighted attribute. The dataset consisted of 193,272 user ratings on anime, with the following attributes: username, anime_id, my_score, and my_status. As an extension of the KNN collaborative filtering paradigm, the rating value is weighted based on the user’s status. The determination of the weight is based on the responses of 105 respondents to a questionnaire. my_score and my_status values will be combined and adjusted using MinMaxNormalization in addition to being weighted. This work implemented the KNN algorithm with the following k parameter values: 3, 5, 9, 15, 23, 33, and 45. Variations in parameters are utilized to determine the optimal k value to employ in KNN, which uses the Pearson similarity matrix to calculate user similarity values. The model evaluation indicate that the optimal Mean Absolute Error and Root Mean Square Error values at parameter k = 5 are 0.14726 and 0.19855, respectively. This improved model’s findings further demonstrate that KNN collaborative filtering with an additional weighted parameter can predict ratings with stable and generally low error values for all k values.
基于用户的KNN协同过滤模型在动漫推荐系统中的改进
本研究旨在解决找到与用户偏好相对应的推荐列表的挑战。MyAnimeList数据集用于模型评估,可通过Kaggle网站访问。本研究的结果是基于其他用户的偏好开发了一个推荐系统(基于用户的模型)。该方案采用了基于KNN算法和加权属性的协同过滤模型。该数据集由193,272个用户对动漫的评分组成,具有以下属性:username, anime_id, my_score和my_status。作为KNN协同过滤范例的扩展,评分值基于用户的状态进行加权。权重的确定是基于105名受访者对一份问卷的回答。除了加权之外,my_score和my_status值将使用MinMaxNormalization进行组合和调整。本工作实现了具有以下k个参数值的KNN算法:3、5、9、15、23、33和45。利用参数的变化来确定KNN中使用的最优k值,KNN使用Pearson相似矩阵来计算用户相似值。模型评价表明,参数k = 5处的最优均值绝对误差和均方根误差分别为0.14726和0.19855。该改进模型的研究结果进一步证明,具有附加加权参数的KNN协同过滤可以预测所有k值的稳定且误差通常较低的评级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
12
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信