Toeplitz Operators and Carleson Measures for Weighted Bergman Spaces Induced by Regular Weights

Pub Date : 2023-09-15 DOI:10.1007/s10114-023-2396-z
Jun Tao Du, Song Xiao Li, Hasi Wulan
{"title":"Toeplitz Operators and Carleson Measures for Weighted Bergman Spaces Induced by Regular Weights","authors":"Jun Tao Du,&nbsp;Song Xiao Li,&nbsp;Hasi Wulan","doi":"10.1007/s10114-023-2396-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we give a universal description of the boundedness and compactness of Toeplitz operator <span>\\({\\cal T}_\\mu ^\\omega \\)</span> between Bergman spaces <span>\\(A_\\eta ^p\\)</span> and <span>\\(A_\\nu^q\\)</span> when <i>μ</i> is a positive Borel measure, 1 &lt; <i>p</i>,<i>q</i> &lt; ∞ and <i>ω</i>, <i>η</i>, <i>ν</i> are regular weights. By using Khinchin’s inequality and Kahane’s inequality, we get a new characterization of the Carleson measure for Bergman spaces induced by regular weights.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-023-2396-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we give a universal description of the boundedness and compactness of Toeplitz operator \({\cal T}_\mu ^\omega \) between Bergman spaces \(A_\eta ^p\) and \(A_\nu^q\) when μ is a positive Borel measure, 1 < p,q < ∞ and ω, η, ν are regular weights. By using Khinchin’s inequality and Kahane’s inequality, we get a new characterization of the Carleson measure for Bergman spaces induced by regular weights.

分享
查看原文
由常规权重诱导的加权伯格曼空间的托普利兹算子和卡列森量
在本文中,我们给出了当μ是正的伯勒度量,1 < p,q < ∞和ω, η, ν是正则权重时,伯格曼空间\(A_\ea ^p\)和\(A_\nu^q\)之间的托普利兹算子\({\cal T}_mu ^\omega \)的有界性和紧凑性的普遍描述。通过使用辛钦不等式和卡汉不等式,我们得到了正则权重诱导的伯格曼空间的卡勒森度量的新特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信