Machine Learning of Nonequilibrium Phase Transition in an Ising Model on Square Lattice

IF 1.9 Q3 PHYSICS, CONDENSED MATTER
Dagne Wordofa Tola, Mulugeta Bekele
{"title":"Machine Learning of Nonequilibrium Phase Transition in an Ising Model on Square Lattice","authors":"Dagne Wordofa Tola, Mulugeta Bekele","doi":"10.3390/condmat8030083","DOIUrl":null,"url":null,"abstract":"This paper presents the investigation of convolutional neural network (CNN) prediction successfully recognizing the temperature of the nonequilibrium phase transitions in two-dimensional (2D) Ising spins on a square lattice. The model uses image snapshots of ferromagnetic 2D spin configurations as an input shape to provide the average output predictions. By considering supervised machine learning techniques, we perform Metropolis Monte Carlo (MC) simulations to generate the configurations. In the equilibrium Ising model, the Metropolis algorithm respects detailed balance condition (DBC), while its nonequilibrium version violates DBC. Violating the DBC of the algorithm is characterized by a parameter −8<ε<8. We find the exact result of the transition temperature Tc(ε) in terms of ε. If we set ε=0, the usual single spin-flip algorithm can be restored, and the equilibrium configurations generated with such a set up are used to train our model. For ε≠0, the system attains the nonequilibrium steady states (NESS), and the modified algorithm generates NESS configurations (test dataset). The trained model is successfully tested on the test dataset. Our result shows that CNN can determine Tc(ε≠0) for various ε values, consistent with the exact result.","PeriodicalId":10665,"journal":{"name":"Condensed Matter","volume":"63 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/condmat8030083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the investigation of convolutional neural network (CNN) prediction successfully recognizing the temperature of the nonequilibrium phase transitions in two-dimensional (2D) Ising spins on a square lattice. The model uses image snapshots of ferromagnetic 2D spin configurations as an input shape to provide the average output predictions. By considering supervised machine learning techniques, we perform Metropolis Monte Carlo (MC) simulations to generate the configurations. In the equilibrium Ising model, the Metropolis algorithm respects detailed balance condition (DBC), while its nonequilibrium version violates DBC. Violating the DBC of the algorithm is characterized by a parameter −8<ε<8. We find the exact result of the transition temperature Tc(ε) in terms of ε. If we set ε=0, the usual single spin-flip algorithm can be restored, and the equilibrium configurations generated with such a set up are used to train our model. For ε≠0, the system attains the nonequilibrium steady states (NESS), and the modified algorithm generates NESS configurations (test dataset). The trained model is successfully tested on the test dataset. Our result shows that CNN can determine Tc(ε≠0) for various ε values, consistent with the exact result.
方形晶格上Ising模型非平衡相变的机器学习
本文研究了卷积神经网络(CNN)预测成功识别方形晶格上二维(2D) Ising自旋非平衡相变温度的方法。该模型使用铁磁二维自旋构型的图像快照作为输入形状,以提供平均输出预测。通过考虑监督机器学习技术,我们执行Metropolis Monte Carlo (MC)模拟来生成配置。在平衡Ising模型中,Metropolis算法遵循详细平衡条件(DBC),而其非平衡版本则违背DBC。违反算法DBC的特征参数为−8<ε<8。我们得到了用ε表示转变温度Tc(ε)的精确结果。当我们设置ε=0时,可以恢复通常的单自旋翻转算法,并使用这种设置生成的平衡构型来训练我们的模型。当ε≠0时,系统达到非平衡稳态(NESS),改进算法生成NESS组态(测试数据集)。在测试数据集上成功地测试了训练好的模型。我们的结果表明,对于不同的ε值,CNN可以确定Tc(ε≠0),与准确的结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Condensed Matter
Condensed Matter PHYSICS, CONDENSED MATTER-
CiteScore
2.90
自引率
11.80%
发文量
58
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信