{"title":"Multiband topological states from band fold of photonic crystals","authors":"Fan Bu, Yun-Tuan Fang","doi":"10.1117/1.jnp.17.036014","DOIUrl":null,"url":null,"abstract":"To find more simple and universal method to realize the topological photonic crystals (PCs), we use the fold effect of bands of PCs and the Su–Schrieffer–Heeger model. Through the change of structure parameters, a lattice can undergo the transformation from topologically trivial to nontrivial states. The fold effect of bands leads to the multiple topological edge bands, which increase the band width of topological states. Furthermore, the topological corner states can be formed in the designed structure.","PeriodicalId":16449,"journal":{"name":"Journal of Nanophotonics","volume":"206 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/1.jnp.17.036014","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
To find more simple and universal method to realize the topological photonic crystals (PCs), we use the fold effect of bands of PCs and the Su–Schrieffer–Heeger model. Through the change of structure parameters, a lattice can undergo the transformation from topologically trivial to nontrivial states. The fold effect of bands leads to the multiple topological edge bands, which increase the band width of topological states. Furthermore, the topological corner states can be formed in the designed structure.
期刊介绍:
The Journal of Nanophotonics publishes peer-reviewed papers focusing on the fabrication and application of nanostructures that facilitate the generation, propagation, manipulation, and detection of light from the infrared to the ultraviolet regimes.