Mohamed Omer Mahgoub Abdelrahim, Lini Lee, Yew Keong Sin
{"title":"Figure-of-Merits (FOM) for Direct Current TENG (Triboelectric Nanogenerator): Structural vs Dimensionless","authors":"Mohamed Omer Mahgoub Abdelrahim, Lini Lee, Yew Keong Sin","doi":"10.33093/jetap.2023.5.2.13","DOIUrl":null,"url":null,"abstract":"This review paper provides a detailed overview of figure-of-merits (FOM) of Direct Current triboelectric nanogenerators (DC-TENGs). TENG represent a potentially ground-breaking technology for extracting mechanical energy from the environment. The FOM is a critical parameter that determines the efficiency of the energy conversion. This paper discusses the various working modes of DC-TENGs and also the research done to maximize output charge density. The review looks at recent different FOMs that could be formulated to improve the analysis of the performance and efficiency of TENGs more accurately. Finally, the paper concludes with a comparison between two different types of FOMs namely structural FOMs and dimensionless FOMs. It provides a valuable resource for researchers working in the field of TENGs and it sheds light on the key factors that influence the FOM of DC-TENGs. This enables the development of more efficient energy harvesting devices.","PeriodicalId":441201,"journal":{"name":"Journal of Engineering Technology and Applied Physics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Technology and Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33093/jetap.2023.5.2.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This review paper provides a detailed overview of figure-of-merits (FOM) of Direct Current triboelectric nanogenerators (DC-TENGs). TENG represent a potentially ground-breaking technology for extracting mechanical energy from the environment. The FOM is a critical parameter that determines the efficiency of the energy conversion. This paper discusses the various working modes of DC-TENGs and also the research done to maximize output charge density. The review looks at recent different FOMs that could be formulated to improve the analysis of the performance and efficiency of TENGs more accurately. Finally, the paper concludes with a comparison between two different types of FOMs namely structural FOMs and dimensionless FOMs. It provides a valuable resource for researchers working in the field of TENGs and it sheds light on the key factors that influence the FOM of DC-TENGs. This enables the development of more efficient energy harvesting devices.