THE ECCENTRIC HUB NUMBER OF A GRAPH

IF 0.3 Q4 MATHEMATICS
Veena Mathad
{"title":"THE ECCENTRIC HUB NUMBER OF A GRAPH","authors":"Veena Mathad","doi":"10.17654/0974165823062","DOIUrl":null,"url":null,"abstract":"A set $H \\subseteq V(G)$ is eccentric hub set of a graph $G$ if $H$ is a hub set of $G$ and also every $v \\in V(G) \\backslash H$ has an eccentric vertex in $H$. The minimal eccentric hub set with minimum cardinality is called minimum eccentric hub set. Its cardinality is eccentric hub number of $G$, denoted by $e h(G)$. In this paper, we deduce some results and bounds on this parameter. Further, we have studied about total number of minimum eccentric hub sets and eccentric hub graphs. Received: June 14, 2023; Accepted: August 2, 2023","PeriodicalId":40868,"journal":{"name":"Advances and Applications in Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances and Applications in Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17654/0974165823062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A set $H \subseteq V(G)$ is eccentric hub set of a graph $G$ if $H$ is a hub set of $G$ and also every $v \in V(G) \backslash H$ has an eccentric vertex in $H$. The minimal eccentric hub set with minimum cardinality is called minimum eccentric hub set. Its cardinality is eccentric hub number of $G$, denoted by $e h(G)$. In this paper, we deduce some results and bounds on this parameter. Further, we have studied about total number of minimum eccentric hub sets and eccentric hub graphs. Received: June 14, 2023; Accepted: August 2, 2023
图的偏心轮毂数
集合H \subseteq V(G)$是图$G$的偏心轮毂集,如果$H$是$G$的轮毂集并且V(G) \反斜杠H$中的每个$ V \在$H$中都有一个偏心顶点。具有最小基数的最小偏心轮毂集称为最小偏心轮毂集。其基数为$G$的偏心轮毂数,记为$e h(G)$。在本文中,我们推导了关于该参数的一些结果和界。进一步研究了最小偏心轮毂集的总数和偏心轮毂图。收稿日期:2023年6月14日;录用日期:2023年8月2日
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
42
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信