PO87

Danilo Maziero, Catheryn Yashar, Jyoti Mayadev, Dominique Rash, Daniel Scanderbeg
{"title":"PO87","authors":"Danilo Maziero, Catheryn Yashar, Jyoti Mayadev, Dominique Rash, Daniel Scanderbeg","doi":"10.1016/j.brachy.2023.06.188","DOIUrl":null,"url":null,"abstract":"Purpose To propose a generalization of the known relationship between total reference air Kerma (TRAK) and isodose surface volumes for intracavitary, hybrid and interstitial applicators used for treating cervical cancer with high dose rate (HDR) brachytherapy (BT). Materials and Methods A single institution cohort of 123 retrospective clinical HDR BT plans from 34 patients treated for cervical cancer were evaluated. The cohort consisted of 71 intracavitary (tandem and ring - T&R - and tandem and ovoid - T&O), 32 hybrid (T&R or T&O with the addition of stainless steel and/or flexi needles) and 20 interstitial plans. Patients received 45Gy external beam radiotherapy (EBRT), followed by one of three fractionation schemes delivered with BT: 600cGy x 4 fractions (4 patients for a total of 16 fractions), 700cGy x 4 fractions (21 patients for a total of 80 fractions) and 800cGy x 3 fractions (9 patients for a total of 27 fractions). The average dose per fraction was 708.9±58.5cGy considering all 123 plans. For each plan the isodose surface volumes (TPSvol) were evaluated considering the accumulated EBRT and BT dose. Because three different fractionation schemes were used, the radiobiological equivalent doses in 2Gy fractions (EQD2) were estimated considering the EBRT and BT contributions. We have considered α/β ratio = 10Gy for tumor repair and repair half time T1/2 = 1.5 hour. In this work we have considered three reference dose levels (dref): 60Gy, 75Gy and 85Gy. Figure 1A-C illustrates the isodose surface volumes for the different fractionation schemes. The TRAK of each plan was also recorded. The relationship between TRAK/dref and TPSvol for the different applicators was evaluated by applying a second degree polynomial linear regression considering the two variables for each case. Results The linear regressions showed correlation coefficients R2 of 0.998, 0.997, 0.995 and 0.997 for the data obtained from treatments using intracavitary (Fig. 1D), hybrid (Fig. 1E), interstitials (Fig. 1F) and all applicators together (Fig. 1G), respectively. The linear regressions were not found to be affected by the different fractionation schemes. The quadratic, linear coefficients and the curve intercepts ranged from 0.621 to 0.739, 11.29 to 12.64 and -16.9 to -12.32, respectively. The fitted equation for the hybrid implants (Fig. 1E) showed the largest differences for the quadratic coefficient and curve intercept when compared to the equation fitted for intracavitary and interstitial applicators. The equation resulting from all applicators (Fig. 1G) showed the smallest differences for quadratic and linear coefficients when compared to the equation resulting intracavitary applicators. Conclusions We have shown that TRAK might be useful to predict volumes of isodose surfaces independently of the applicator and fractionation scheme used for treating cervical cancer with BT. The potential to use the correlation between TRAK and volumes of isodose surfaces to predict patients’ outcomes and toxicities should be evaluated in a further study. To propose a generalization of the known relationship between total reference air Kerma (TRAK) and isodose surface volumes for intracavitary, hybrid and interstitial applicators used for treating cervical cancer with high dose rate (HDR) brachytherapy (BT). A single institution cohort of 123 retrospective clinical HDR BT plans from 34 patients treated for cervical cancer were evaluated. The cohort consisted of 71 intracavitary (tandem and ring - T&R - and tandem and ovoid - T&O), 32 hybrid (T&R or T&O with the addition of stainless steel and/or flexi needles) and 20 interstitial plans. Patients received 45Gy external beam radiotherapy (EBRT), followed by one of three fractionation schemes delivered with BT: 600cGy x 4 fractions (4 patients for a total of 16 fractions), 700cGy x 4 fractions (21 patients for a total of 80 fractions) and 800cGy x 3 fractions (9 patients for a total of 27 fractions). The average dose per fraction was 708.9±58.5cGy considering all 123 plans. For each plan the isodose surface volumes (TPSvol) were evaluated considering the accumulated EBRT and BT dose. Because three different fractionation schemes were used, the radiobiological equivalent doses in 2Gy fractions (EQD2) were estimated considering the EBRT and BT contributions. We have considered α/β ratio = 10Gy for tumor repair and repair half time T1/2 = 1.5 hour. In this work we have considered three reference dose levels (dref): 60Gy, 75Gy and 85Gy. Figure 1A-C illustrates the isodose surface volumes for the different fractionation schemes. The TRAK of each plan was also recorded. The relationship between TRAK/dref and TPSvol for the different applicators was evaluated by applying a second degree polynomial linear regression considering the two variables for each case. The linear regressions showed correlation coefficients R2 of 0.998, 0.997, 0.995 and 0.997 for the data obtained from treatments using intracavitary (Fig. 1D), hybrid (Fig. 1E), interstitials (Fig. 1F) and all applicators together (Fig. 1G), respectively. The linear regressions were not found to be affected by the different fractionation schemes. The quadratic, linear coefficients and the curve intercepts ranged from 0.621 to 0.739, 11.29 to 12.64 and -16.9 to -12.32, respectively. The fitted equation for the hybrid implants (Fig. 1E) showed the largest differences for the quadratic coefficient and curve intercept when compared to the equation fitted for intracavitary and interstitial applicators. The equation resulting from all applicators (Fig. 1G) showed the smallest differences for quadratic and linear coefficients when compared to the equation resulting intracavitary applicators. We have shown that TRAK might be useful to predict volumes of isodose surfaces independently of the applicator and fractionation scheme used for treating cervical cancer with BT. The potential to use the correlation between TRAK and volumes of isodose surfaces to predict patients’ outcomes and toxicities should be evaluated in a further study.","PeriodicalId":93914,"journal":{"name":"Brachytherapy","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brachytherapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.brachy.2023.06.188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose To propose a generalization of the known relationship between total reference air Kerma (TRAK) and isodose surface volumes for intracavitary, hybrid and interstitial applicators used for treating cervical cancer with high dose rate (HDR) brachytherapy (BT). Materials and Methods A single institution cohort of 123 retrospective clinical HDR BT plans from 34 patients treated for cervical cancer were evaluated. The cohort consisted of 71 intracavitary (tandem and ring - T&R - and tandem and ovoid - T&O), 32 hybrid (T&R or T&O with the addition of stainless steel and/or flexi needles) and 20 interstitial plans. Patients received 45Gy external beam radiotherapy (EBRT), followed by one of three fractionation schemes delivered with BT: 600cGy x 4 fractions (4 patients for a total of 16 fractions), 700cGy x 4 fractions (21 patients for a total of 80 fractions) and 800cGy x 3 fractions (9 patients for a total of 27 fractions). The average dose per fraction was 708.9±58.5cGy considering all 123 plans. For each plan the isodose surface volumes (TPSvol) were evaluated considering the accumulated EBRT and BT dose. Because three different fractionation schemes were used, the radiobiological equivalent doses in 2Gy fractions (EQD2) were estimated considering the EBRT and BT contributions. We have considered α/β ratio = 10Gy for tumor repair and repair half time T1/2 = 1.5 hour. In this work we have considered three reference dose levels (dref): 60Gy, 75Gy and 85Gy. Figure 1A-C illustrates the isodose surface volumes for the different fractionation schemes. The TRAK of each plan was also recorded. The relationship between TRAK/dref and TPSvol for the different applicators was evaluated by applying a second degree polynomial linear regression considering the two variables for each case. Results The linear regressions showed correlation coefficients R2 of 0.998, 0.997, 0.995 and 0.997 for the data obtained from treatments using intracavitary (Fig. 1D), hybrid (Fig. 1E), interstitials (Fig. 1F) and all applicators together (Fig. 1G), respectively. The linear regressions were not found to be affected by the different fractionation schemes. The quadratic, linear coefficients and the curve intercepts ranged from 0.621 to 0.739, 11.29 to 12.64 and -16.9 to -12.32, respectively. The fitted equation for the hybrid implants (Fig. 1E) showed the largest differences for the quadratic coefficient and curve intercept when compared to the equation fitted for intracavitary and interstitial applicators. The equation resulting from all applicators (Fig. 1G) showed the smallest differences for quadratic and linear coefficients when compared to the equation resulting intracavitary applicators. Conclusions We have shown that TRAK might be useful to predict volumes of isodose surfaces independently of the applicator and fractionation scheme used for treating cervical cancer with BT. The potential to use the correlation between TRAK and volumes of isodose surfaces to predict patients’ outcomes and toxicities should be evaluated in a further study. To propose a generalization of the known relationship between total reference air Kerma (TRAK) and isodose surface volumes for intracavitary, hybrid and interstitial applicators used for treating cervical cancer with high dose rate (HDR) brachytherapy (BT). A single institution cohort of 123 retrospective clinical HDR BT plans from 34 patients treated for cervical cancer were evaluated. The cohort consisted of 71 intracavitary (tandem and ring - T&R - and tandem and ovoid - T&O), 32 hybrid (T&R or T&O with the addition of stainless steel and/or flexi needles) and 20 interstitial plans. Patients received 45Gy external beam radiotherapy (EBRT), followed by one of three fractionation schemes delivered with BT: 600cGy x 4 fractions (4 patients for a total of 16 fractions), 700cGy x 4 fractions (21 patients for a total of 80 fractions) and 800cGy x 3 fractions (9 patients for a total of 27 fractions). The average dose per fraction was 708.9±58.5cGy considering all 123 plans. For each plan the isodose surface volumes (TPSvol) were evaluated considering the accumulated EBRT and BT dose. Because three different fractionation schemes were used, the radiobiological equivalent doses in 2Gy fractions (EQD2) were estimated considering the EBRT and BT contributions. We have considered α/β ratio = 10Gy for tumor repair and repair half time T1/2 = 1.5 hour. In this work we have considered three reference dose levels (dref): 60Gy, 75Gy and 85Gy. Figure 1A-C illustrates the isodose surface volumes for the different fractionation schemes. The TRAK of each plan was also recorded. The relationship between TRAK/dref and TPSvol for the different applicators was evaluated by applying a second degree polynomial linear regression considering the two variables for each case. The linear regressions showed correlation coefficients R2 of 0.998, 0.997, 0.995 and 0.997 for the data obtained from treatments using intracavitary (Fig. 1D), hybrid (Fig. 1E), interstitials (Fig. 1F) and all applicators together (Fig. 1G), respectively. The linear regressions were not found to be affected by the different fractionation schemes. The quadratic, linear coefficients and the curve intercepts ranged from 0.621 to 0.739, 11.29 to 12.64 and -16.9 to -12.32, respectively. The fitted equation for the hybrid implants (Fig. 1E) showed the largest differences for the quadratic coefficient and curve intercept when compared to the equation fitted for intracavitary and interstitial applicators. The equation resulting from all applicators (Fig. 1G) showed the smallest differences for quadratic and linear coefficients when compared to the equation resulting intracavitary applicators. We have shown that TRAK might be useful to predict volumes of isodose surfaces independently of the applicator and fractionation scheme used for treating cervical cancer with BT. The potential to use the correlation between TRAK and volumes of isodose surfaces to predict patients’ outcomes and toxicities should be evaluated in a further study.
PO87
目的对高剂量率(HDR)近距离放疗(BT)治疗宫颈癌的腔内、混合型和间质应用器的总参考空气Kerma (TRAK)与等剂量表面体积之间的已知关系进行概括。材料与方法对34例宫颈癌患者的123例回顾性临床HDR BT计划进行单机构队列评价。该队列包括71例腔内(串联和环形T&R -和串联和卵圆形T&O -), 32例混合型(T&R或T&O加不锈钢针和/或柔性针)和20例间隙计划。患者接受45Gy外束放疗(EBRT),随后接受三种BT分流方案中的一种:600cGy × 4分流(4例,共16个分流)、700cGy × 4分流(21例,共80个分流)和800cGy × 3分流(9例,共27个分流)。123个方案的平均剂量为708.9±58.5 gy。考虑EBRT和BT的累积剂量,评估每个计划的等剂量表面体积(TPSvol)。由于使用了三种不同的分离方案,考虑EBRT和BT的贡献,估计了2Gy组分(EQD2)的放射生物学等效剂量。我们考虑肿瘤修复时α/β比= 10Gy,修复时间T1/2 = 1.5小时。在这项工作中,我们考虑了三种参考剂量水平(dref): 60Gy, 75Gy和85Gy。图1A-C显示了不同分馏方案的等剂量表面体积。还记录了每个计划的TRAK。考虑到每种情况下的两个变量,通过应用二阶多项式线性回归来评估不同涂抹者的TRAK/dref和TPSvol之间的关系。结果线性回归显示,腔内(图1D)、杂交(图1E)、间隙(图1F)和所有施药器(图1G)处理数据的相关系数R2分别为0.998、0.997、0.995和0.997。发现线性回归不受不同分馏方案的影响。二次系数为0.621 ~ 0.739,线性系数为11.29 ~ 12.64,曲线截距为-16.9 ~ -12.32。混合种植体的拟合方程(图1E)显示,与腔内和间隙种植体的拟合方程相比,二次系数和曲线截距的差异最大。与腔内涂抹器产生的方程相比,所有涂抹器产生的方程(图1G)显示了二次系数和线性系数的最小差异。我们已经证明,TRAK可能有助于预测与BT治疗宫颈癌的涂抹器和分离方案无关的等剂量表面体积。TRAK和等剂量表面体积之间的相关性用于预测患者预后和毒性的潜力应在进一步研究中进行评估。目的:对用于高剂量率(HDR)近距离放疗(BT)治疗宫颈癌的腔内、混合型和间质应用器的总参考空气Kerma (TRAK)与等剂量表面体积之间的已知关系进行概括。对34例宫颈癌患者的123例回顾性临床HDR BT计划进行单机构队列评估。该队列包括71例腔内(串联和环形T&R -和串联和卵圆形T&O -), 32例混合型(T&R或T&O加不锈钢针和/或柔性针)和20例间隙计划。患者接受45Gy外束放疗(EBRT),随后接受三种BT分流方案中的一种:600cGy × 4分流(4例,共16个分流)、700cGy × 4分流(21例,共80个分流)和800cGy × 3分流(9例,共27个分流)。123个方案的平均剂量为708.9±58.5 gy。考虑EBRT和BT的累积剂量,评估每个计划的等剂量表面体积(TPSvol)。由于使用了三种不同的分离方案,考虑EBRT和BT的贡献,估计了2Gy组分(EQD2)的放射生物学等效剂量。我们考虑肿瘤修复时α/β比= 10Gy,修复时间T1/2 = 1.5小时。在这项工作中,我们考虑了三种参考剂量水平(dref): 60Gy, 75Gy和85Gy。图1A-C显示了不同分馏方案的等剂量表面体积。还记录了每个计划的TRAK。考虑到每种情况下的两个变量,通过应用二阶多项式线性回归来评估不同涂抹者的TRAK/dref和TPSvol之间的关系。线性回归的相关系数R2分别为0.998、0.997、0.995和0。 目的对高剂量率(HDR)近距离放疗(BT)治疗宫颈癌的腔内、混合型和间质应用器的总参考空气Kerma (TRAK)与等剂量表面体积之间的已知关系进行概括。材料与方法对34例宫颈癌患者的123例回顾性临床HDR BT计划进行单机构队列评价。该队列包括71例腔内(串联和环形T&R -和串联和卵圆形T&O -), 32例混合型(T&R或T&O加不锈钢针和/或柔性针)和20例间隙计划。患者接受45Gy外束放疗(EBRT),随后接受三种BT分流方案中的一种:600cGy × 4分流(4例,共16个分流)、700cGy × 4分流(21例,共80个分流)和800cGy × 3分流(9例,共27个分流)。123个方案的平均剂量为708.9±58.5 gy。考虑EBRT和BT的累积剂量,评估每个计划的等剂量表面体积(TPSvol)。由于使用了三种不同的分离方案,考虑EBRT和BT的贡献,估计了2Gy组分(EQD2)的放射生物学等效剂量。我们考虑肿瘤修复时α/β比= 10Gy,修复时间T1/2 = 1.5小时。在这项工作中,我们考虑了三种参考剂量水平(dref): 60Gy, 75Gy和85Gy。图1A-C显示了不同分馏方案的等剂量表面体积。还记录了每个计划的TRAK。考虑到每种情况下的两个变量,通过应用二阶多项式线性回归来评估不同涂抹者的TRAK/dref和TPSvol之间的关系。结果线性回归显示,腔内(图1D)、杂交(图1E)、间隙(图1F)和所有施药器(图1G)处理数据的相关系数R2分别为0.998、0.997、0.995和0.997。发现线性回归不受不同分馏方案的影响。二次系数为0.621 ~ 0.739,线性系数为11.29 ~ 12.64,曲线截距为-16.9 ~ -12.32。混合种植体的拟合方程(图1E)显示,与腔内和间隙种植体的拟合方程相比,二次系数和曲线截距的差异最大。与腔内涂抹器产生的方程相比,所有涂抹器产生的方程(图1G)显示了二次系数和线性系数的最小差异。我们已经证明,TRAK可能有助于预测与BT治疗宫颈癌的涂抹器和分离方案无关的等剂量表面体积。TRAK和等剂量表面体积之间的相关性用于预测患者预后和毒性的潜力应在进一步研究中进行评估。目的:对用于高剂量率(HDR)近距离放疗(BT)治疗宫颈癌的腔内、混合型和间质应用器的总参考空气Kerma (TRAK)与等剂量表面体积之间的已知关系进行概括。对34例宫颈癌患者的123例回顾性临床HDR BT计划进行单机构队列评估。该队列包括71例腔内(串联和环形T&R -和串联和卵圆形T&O -), 32例混合型(T&R或T&O加不锈钢针和/或柔性针)和20例间隙计划。患者接受45Gy外束放疗(EBRT),随后接受三种BT分流方案中的一种:600cGy × 4分流(4例,共16个分流)、700cGy × 4分流(21例,共80个分流)和800cGy × 3分流(9例,共27个分流)。123个方案的平均剂量为708.9±58.5 gy。考虑EBRT和BT的累积剂量,评估每个计划的等剂量表面体积(TPSvol)。由于使用了三种不同的分离方案,考虑EBRT和BT的贡献,估计了2Gy组分(EQD2)的放射生物学等效剂量。我们考虑肿瘤修复时α/β比= 10Gy,修复时间T1/2 = 1.5小时。在这项工作中,我们考虑了三种参考剂量水平(dref): 60Gy, 75Gy和85Gy。图1A-C显示了不同分馏方案的等剂量表面体积。还记录了每个计划的TRAK。考虑到每种情况下的两个变量,通过应用二阶多项式线性回归来评估不同涂抹者的TRAK/dref和TPSvol之间的关系。线性回归的相关系数R2分别为0.998、0.997、0.995和0。 997,分别使用腔内(图1D)、混合(图1E)、间质(图1F)和所有施用器一起(图1G)处理获得的数据。发现线性回归不受不同分馏方案的影响。二次系数为0.621 ~ 0.739,线性系数为11.29 ~ 12.64,曲线截距为-16.9 ~ -12.32。混合种植体的拟合方程(图1E)显示,与腔内和间隙种植体的拟合方程相比,二次系数和曲线截距的差异最大。与腔内涂抹器产生的方程相比,所有涂抹器产生的方程(图1G)显示了二次系数和线性系数的最小差异。我们已经证明,TRAK可能有助于预测与BT治疗宫颈癌的施药器和分离方案无关的等剂量表面体积。TRAK和等剂量表面体积之间的相关性用于预测患者预后和毒性的可能性应在进一步的研究中进行评估。 997,分别使用腔内(图1D)、混合(图1E)、间质(图1F)和所有施用器一起(图1G)处理获得的数据。发现线性回归不受不同分馏方案的影响。二次系数为0.621 ~ 0.739,线性系数为11.29 ~ 12.64,曲线截距为-16.9 ~ -12.32。混合种植体的拟合方程(图1E)显示,与腔内和间隙种植体的拟合方程相比,二次系数和曲线截距的差异最大。与腔内涂抹器产生的方程相比,所有涂抹器产生的方程(图1G)显示了二次系数和线性系数的最小差异。我们已经证明,TRAK可能有助于预测与BT治疗宫颈癌的施药器和分离方案无关的等剂量表面体积。TRAK和等剂量表面体积之间的相关性用于预测患者预后和毒性的可能性应在进一步的研究中进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信