Application of GIS based analytical hierarchy process and multicriteria decision analysis methods to identify groundwater potential zones in Jedeb Watershed, Ethiopia
{"title":"Application of GIS based analytical hierarchy process and multicriteria decision analysis methods to identify groundwater potential zones in Jedeb Watershed, Ethiopia","authors":"Temesgen Mekuriaw Manderso, Yitbarek Andualem Mekonnen, Tadege Aragaw Worku","doi":"10.26599/jgse.2023.9280019","DOIUrl":null,"url":null,"abstract":"The hydrogeological situation of the study area requires the identification of groundwater potential. Remote sensing and satellite data have proven to be reliable tools for understanding various factors that affect groundwater occurrence and movement. This study employed weighted overlay analysis based on satellite imagery and secondary data to create a thematic map for characterizing groundwater potentials in the study area located within Abbay Basin, Ethiopia. Remote sensing (RS) and GIS-based Fuzzy-Analytical Hierarchy Process methods were utilized to classify groundwater potential (GWP) zones into five categories: Very good, good, moderate, poor, and very poor. The central and eastern parts of the study area were identified as having high (33.186%) and very high (2.351%) groundwater potentials, while the western part exhibited poor and very poor potential areas. The groundwater potential map delineated higher and moderate potentials, suitable for installing shallow and production bores. This research demonstrates the effectiveness of RS and GIS techniques for delineating groundwater potential zones, which can aid in the planning and management of groundwater resources. The research findings have the potential to contribute to the formulation of improved groundwater management programs in the study area.","PeriodicalId":43567,"journal":{"name":"Journal of Groundwater Science and Engineering","volume":"41 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Groundwater Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26599/jgse.2023.9280019","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
The hydrogeological situation of the study area requires the identification of groundwater potential. Remote sensing and satellite data have proven to be reliable tools for understanding various factors that affect groundwater occurrence and movement. This study employed weighted overlay analysis based on satellite imagery and secondary data to create a thematic map for characterizing groundwater potentials in the study area located within Abbay Basin, Ethiopia. Remote sensing (RS) and GIS-based Fuzzy-Analytical Hierarchy Process methods were utilized to classify groundwater potential (GWP) zones into five categories: Very good, good, moderate, poor, and very poor. The central and eastern parts of the study area were identified as having high (33.186%) and very high (2.351%) groundwater potentials, while the western part exhibited poor and very poor potential areas. The groundwater potential map delineated higher and moderate potentials, suitable for installing shallow and production bores. This research demonstrates the effectiveness of RS and GIS techniques for delineating groundwater potential zones, which can aid in the planning and management of groundwater resources. The research findings have the potential to contribute to the formulation of improved groundwater management programs in the study area.
期刊介绍:
It publishes original, innovative, and integrative research in groundwater science and engineering with a focus on hydrogeology, environmental geology, groundwater resources, agriculture and groundwater, groundwater resources and ecology, groundwater and geologic environment, groundwater circulation, groundwater pollution, groundwater exploitation and utilization, hydrogeological standards and methods, groundwater information science, climate change and groundwater. The Editorial Board is composed of more than sixty world-renowned experts and scholars, 47% of whom are foreign scientists. Up to now, the foreign authors contributed papers are from USA, Japan, Canada, Australia, Russia, Mongolia, Thailand and Vietnam.