{"title":"Numerical investigation of turbulent mixed convection in a round bottom flask using a hybrid nanofluid","authors":"Adel Baiti, Hicham Salhi, Nadjib Chafai","doi":"10.1177/16878132231195022","DOIUrl":null,"url":null,"abstract":"In this study, we conducted a numerical investigation of the turbulent mixed convection of a hybrid nanofluid (HNF) in a flask equipped with an agitator, which is commonly used in organic chemistry synthesis. The bottom wall and the middle section of the flask were maintained at a constant high temperature T h , while the upper, left, and right walls up to the middle of the flask were kept at a low temperature T c . The HNF consisted of Graphene (Gr) and Carbon nanotubes (CNTs) nanoparticles (NP) dispersed in pure water. The governing equations were solved numerically using the finite size approach and formulated using the Boussinesq approximation. The effects of the NP volume fraction φ (ranging from 0% to 6%), the Rayleigh number Ra (ranging from 10 4 to 10 6 ), and the Nusselt number ( Nu) were investigated in this simulation. The results indicated that the heat transfer is noticeably influenced by the Ra number and the increase in the φ ratio. Additionally, the agitator rotation speed had a slight effect on the heat transfer.","PeriodicalId":49110,"journal":{"name":"Advances in Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/16878132231195022","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we conducted a numerical investigation of the turbulent mixed convection of a hybrid nanofluid (HNF) in a flask equipped with an agitator, which is commonly used in organic chemistry synthesis. The bottom wall and the middle section of the flask were maintained at a constant high temperature T h , while the upper, left, and right walls up to the middle of the flask were kept at a low temperature T c . The HNF consisted of Graphene (Gr) and Carbon nanotubes (CNTs) nanoparticles (NP) dispersed in pure water. The governing equations were solved numerically using the finite size approach and formulated using the Boussinesq approximation. The effects of the NP volume fraction φ (ranging from 0% to 6%), the Rayleigh number Ra (ranging from 10 4 to 10 6 ), and the Nusselt number ( Nu) were investigated in this simulation. The results indicated that the heat transfer is noticeably influenced by the Ra number and the increase in the φ ratio. Additionally, the agitator rotation speed had a slight effect on the heat transfer.
期刊介绍:
Advances in Mechanical Engineering (AIME) is a JCR Ranked, peer-reviewed, open access journal which publishes a wide range of original research and review articles. The journal Editorial Board welcomes manuscripts in both fundamental and applied research areas, and encourages submissions which contribute novel and innovative insights to the field of mechanical engineering