DEEP LEARNING TO PREDICT TSUNAMI HEIGHT AT THE SHORELINE USING OCEAN BOTTOM PRESSURE DATA

Willington Renteria, Patrick Lynett
{"title":"DEEP LEARNING TO PREDICT TSUNAMI HEIGHT AT THE SHORELINE USING OCEAN BOTTOM PRESSURE DATA","authors":"Willington Renteria, Patrick Lynett","doi":"10.9753/icce.v37.management.98","DOIUrl":null,"url":null,"abstract":"Real-time tsunami prediction is a required component of a tsunami warning system. Several advances have been made to improve prediction in the tsunami warning process, including precomputed databases and the assimilation of deep-ocean observations (DART buoys) into numerical modeling (Bernard and Titov, 2015). These improvements aim to accurately and quickly predict the time and height of the tsunami wave impact. Here, two deep learning models (DLM) are developed to predict the maximum tsunami height at a local/long shoreline from four time series observations of ocean bottom pressure data.","PeriodicalId":497926,"journal":{"name":"Proceedings of ... Conference on Coastal Engineering","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of ... Conference on Coastal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9753/icce.v37.management.98","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Real-time tsunami prediction is a required component of a tsunami warning system. Several advances have been made to improve prediction in the tsunami warning process, including precomputed databases and the assimilation of deep-ocean observations (DART buoys) into numerical modeling (Bernard and Titov, 2015). These improvements aim to accurately and quickly predict the time and height of the tsunami wave impact. Here, two deep learning models (DLM) are developed to predict the maximum tsunami height at a local/long shoreline from four time series observations of ocean bottom pressure data.
利用海底压力数据进行深度学习,预测海岸线的海啸高度
海啸实时预报是海啸预警系统的必要组成部分。在改善海啸预警过程中的预测方面已经取得了一些进展,包括预先计算的数据库和将深海观测(DART浮标)同化到数值模拟中(Bernard and Titov, 2015)。这些改进旨在准确、快速地预测海啸波影响的时间和高度。本文建立了两个深度学习模型(DLM),利用四次海底压力数据的时间序列观测来预测本地/长海岸线的最大海啸高度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信