Granular flow in novel Octet shape-based lattice frame material

IF 2.1 4区 工程技术 Q3 ENERGY & FUELS
Inderjot Kaur, Youssef Aider, Heejin Cho, Prashant Singh
{"title":"Granular flow in novel Octet shape-based lattice frame material","authors":"Inderjot Kaur, Youssef Aider, Heejin Cho, Prashant Singh","doi":"10.1115/1.4064018","DOIUrl":null,"url":null,"abstract":"Abstract Moving packed-bed heat exchanger in concentrated solar power (CSP) plants involves heat transfer between heated falling particles and supercritical carbon dioxide. The overall effective thermal conductivity of the moving packed bed and particle-side channel contact resistances are still the bottlenecks in achieving the desirable thermal transport levels. To this end, a novel moving packed bed heat exchanger consisting of Octet lattice packed between the walls of the particle-side channel is proposed in this study. Granular flow analysis in Octet lattice moving-packed bed heat exchanger (OLHX) was conducted through experiments and DEM-based numerical simulations. The experimental images clearly demonstrated stagnation regions upstream of lattice fibers, void regions downstream of the fiber junctions and wavy type unobstructed flow on lateral sides of the fibers. DEM simulations were successful in capturing all these critical flow phenomena. Larger flow velocities were observed on the lateral sides of the fibers in the simulations. Also, when the particles in the silo were emptied, the final images showed accumulation of particles on the inter-fiber as well as fiber-channel wall junctions. Moreover, the fiber connections resulted in some regions devoid of the particle contact on the channel endwall which means that these regions would suffer from poor thermal exchange. The overall mass flow rate increased with increasing porosity for a fixed particle diameter.","PeriodicalId":17124,"journal":{"name":"Journal of Solar Energy Engineering-transactions of The Asme","volume":"89 4","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solar Energy Engineering-transactions of The Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4064018","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Moving packed-bed heat exchanger in concentrated solar power (CSP) plants involves heat transfer between heated falling particles and supercritical carbon dioxide. The overall effective thermal conductivity of the moving packed bed and particle-side channel contact resistances are still the bottlenecks in achieving the desirable thermal transport levels. To this end, a novel moving packed bed heat exchanger consisting of Octet lattice packed between the walls of the particle-side channel is proposed in this study. Granular flow analysis in Octet lattice moving-packed bed heat exchanger (OLHX) was conducted through experiments and DEM-based numerical simulations. The experimental images clearly demonstrated stagnation regions upstream of lattice fibers, void regions downstream of the fiber junctions and wavy type unobstructed flow on lateral sides of the fibers. DEM simulations were successful in capturing all these critical flow phenomena. Larger flow velocities were observed on the lateral sides of the fibers in the simulations. Also, when the particles in the silo were emptied, the final images showed accumulation of particles on the inter-fiber as well as fiber-channel wall junctions. Moreover, the fiber connections resulted in some regions devoid of the particle contact on the channel endwall which means that these regions would suffer from poor thermal exchange. The overall mass flow rate increased with increasing porosity for a fixed particle diameter.
新型八边形晶格框架材料中的颗粒流动
摘要移动填料床式热交换器在聚光太阳能(CSP)电厂中涉及到加热的下落颗粒与超临界二氧化碳之间的传热。移动填料床的整体有效导热系数和颗粒侧通道接触电阻仍然是实现理想热传递水平的瓶颈。为此,本文提出了一种新型的移动填充床换热器,该换热器由填充在颗粒侧通道壁面之间的八元晶格组成。通过实验和基于dem的数值模拟,对八元晶格移动填充床换热器(OLHX)中的颗粒流动进行了分析。实验图像清楚地显示了晶格纤维上游的停滞区,纤维连接处下游的空洞区和纤维侧面的波浪形通畅流动。DEM模拟成功地捕获了所有这些临界流动现象。在模拟中,在纤维的侧面观察到较大的流动速度。此外,当筒仓中的颗粒被清空时,最终图像显示颗粒在纤维间以及纤维通道壁交界处积聚。此外,光纤连接导致通道端壁上的一些区域没有颗粒接触,这意味着这些区域的热交换会很差。在颗粒直径一定的情况下,随着孔隙率的增加,总质量流率也随之增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
26.10%
发文量
98
审稿时长
6.0 months
期刊介绍: The Journal of Solar Energy Engineering - Including Wind Energy and Building Energy Conservation - publishes research papers that contain original work of permanent interest in all areas of solar energy and energy conservation, as well as discussions of policy and regulatory issues that affect renewable energy technologies and their implementation. Papers that do not include original work, but nonetheless present quality analysis or incremental improvements to past work may be published as Technical Briefs. Review papers are accepted but should be discussed with the Editor prior to submission. The Journal also publishes a section called Solar Scenery that features photographs or graphical displays of significant new installations or research facilities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信