Multi-Machine Power System Transient Stability Enhancement Utilizing a Fractional Order-Based Nonlinear Stabilizer

IF 3.6 2区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Arman Fathollahi, Björn Andresen
{"title":"Multi-Machine Power System Transient Stability Enhancement Utilizing a Fractional Order-Based Nonlinear Stabilizer","authors":"Arman Fathollahi, Björn Andresen","doi":"10.3390/fractalfract7110808","DOIUrl":null,"url":null,"abstract":"Given the intricate nature of contemporary energy systems, addressing the control and stability analysis of these systems necessitates the consideration of highly large-scale models. Transient stability analysis stands as a crucial challenge in enhancing energy system efficiency. Power System Stabilizers (PSSs), integrated within excitation control for synchronous generators, offer a cost-effective means to bolster power systems’ stability and reliability. In this study, we propose an enhanced nonlinear control strategy based on synergetic control theory for PSSs. This strategy aims to mitigate electromechanical oscillations and rectify the limitations associated with linear approximations within large-scale energy systems that incorporate thyristor-controlled series capacitors (TCSCs). To dynamically adjust the coefficients of the nonlinear controller, we employ the Fractional Order Fish Migration Optimization (FOFMO) algorithm, rooted in fractional calculus (FC) theory. The FOFMO algorithm adapts by updating position and velocity within fractional-order structures. To assess the effectiveness of the improved controller, comprehensive numerical simulations are conducted. Initially, we examine its performance in a single machine connected to the infinite bus (SMIB) power system under various fault conditions. Subsequently, we extend the application of the proposed nonlinear stabilizer to a two-area, four-machine power system. Our numerical results reveal highly promising advancements in both control accuracy and the dynamic characteristics of controlled power systems.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":"5 8","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fractalfract7110808","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Given the intricate nature of contemporary energy systems, addressing the control and stability analysis of these systems necessitates the consideration of highly large-scale models. Transient stability analysis stands as a crucial challenge in enhancing energy system efficiency. Power System Stabilizers (PSSs), integrated within excitation control for synchronous generators, offer a cost-effective means to bolster power systems’ stability and reliability. In this study, we propose an enhanced nonlinear control strategy based on synergetic control theory for PSSs. This strategy aims to mitigate electromechanical oscillations and rectify the limitations associated with linear approximations within large-scale energy systems that incorporate thyristor-controlled series capacitors (TCSCs). To dynamically adjust the coefficients of the nonlinear controller, we employ the Fractional Order Fish Migration Optimization (FOFMO) algorithm, rooted in fractional calculus (FC) theory. The FOFMO algorithm adapts by updating position and velocity within fractional-order structures. To assess the effectiveness of the improved controller, comprehensive numerical simulations are conducted. Initially, we examine its performance in a single machine connected to the infinite bus (SMIB) power system under various fault conditions. Subsequently, we extend the application of the proposed nonlinear stabilizer to a two-area, four-machine power system. Our numerical results reveal highly promising advancements in both control accuracy and the dynamic characteristics of controlled power systems.
基于分数阶非线性稳定器的多机电力系统暂态稳定性增强
鉴于当代能源系统的复杂性,解决这些系统的控制和稳定性分析需要考虑高度大规模的模型。暂态稳定分析是提高能源系统效率的关键问题。电力系统稳定器(pss)集成在同步发电机的励磁控制中,为提高电力系统的稳定性和可靠性提供了一种经济有效的手段。在本研究中,我们提出一种基于协同控制理论的增强型非线性控制策略。该策略旨在减轻机电振荡,并纠正包含晶闸管控制串联电容器(TCSCs)的大型能源系统中与线性近似相关的限制。为了动态调整非线性控制器的系数,我们采用了基于分数阶微积分(FC)理论的分数阶鱼类迁移优化(FOFMO)算法。FOFMO算法通过在分数阶结构中更新位置和速度进行适应。为了评估改进后的控制器的有效性,进行了全面的数值仿真。首先,我们在一台连接到无限母线(SMIB)电力系统的机器上测试了它在各种故障条件下的性能。随后,我们将所提出的非线性稳定器推广到两区四机电力系统。我们的数值结果显示,在控制精度和被控电力系统的动态特性方面都有很大的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fractal and Fractional
Fractal and Fractional MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
4.60
自引率
18.50%
发文量
632
审稿时长
11 weeks
期刊介绍: Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信