A polynomial construction of perfect sequence covering arrays

Q3 Mathematics
Aidan R. Gentle
{"title":"A polynomial construction of perfect sequence covering arrays","authors":"Aidan R. Gentle","doi":"10.5802/alco.308","DOIUrl":null,"url":null,"abstract":"A PSCA(v,t,λ) is a multiset of permutations of the v-element alphabet {0,⋯,v-1} such that every sequence of t distinct elements of the alphabet appears in the specified order in exactly λ permutations. For v⩾t, let g(v,t) be the smallest positive integer λ such that a PSCA(v,t,λ) exists. Kuperberg, Lovett and Peled proved g(v,t)=O(v t ) using probabilistic methods. We present an explicit construction that proves g(v,t)=O(v t(t-2) ) for fixed t⩾4. The method of construction involves taking a permutation representation of the group of projectivities of a suitable projective space of dimension t-2 and deleting all but a certain number of symbols from each permutation. In the case that this space is a Desarguesian projective plane, we also show that there exists a permutation representation of the group of projectivities of the plane that covers the vast majority of 4-sequences of its points the same number of times.","PeriodicalId":36046,"journal":{"name":"Algebraic Combinatorics","volume":"40 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/alco.308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

A PSCA(v,t,λ) is a multiset of permutations of the v-element alphabet {0,⋯,v-1} such that every sequence of t distinct elements of the alphabet appears in the specified order in exactly λ permutations. For v⩾t, let g(v,t) be the smallest positive integer λ such that a PSCA(v,t,λ) exists. Kuperberg, Lovett and Peled proved g(v,t)=O(v t ) using probabilistic methods. We present an explicit construction that proves g(v,t)=O(v t(t-2) ) for fixed t⩾4. The method of construction involves taking a permutation representation of the group of projectivities of a suitable projective space of dimension t-2 and deleting all but a certain number of symbols from each permutation. In the case that this space is a Desarguesian projective plane, we also show that there exists a permutation representation of the group of projectivities of the plane that covers the vast majority of 4-sequences of its points the same number of times.
完备序列覆盖数组的多项式构造
PSCA(v,t,λ)是v元素字母表{0,⋯,v-1}的置换的多集,使得字母表中t个不同元素的每个序列以指定的顺序恰好出现在λ置换中。对于v小于或等于t,设g(v,t)为最小的正整数λ,使PSCA(v,t,λ)存在。Kuperberg, Lovett和Peled用概率方法证明了g(v,t)=O(v t)。我们提出了一个明确的结构,证明g(v,t)=O(v t(t-2))对于固定t大于或等于4。构造方法包括取t-2维合适的射影空间的投影群的置换表示,并从每个置换中删除除一定数量的符号外的所有符号。在这个空间是一个德萨古投影平面的情况下,我们还证明了平面的投影群存在一个置换表示,它覆盖了其绝大多数点的4-序列的相同次数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebraic Combinatorics
Algebraic Combinatorics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.30
自引率
0.00%
发文量
45
审稿时长
51 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信