{"title":"Logistic Normal Multinomial Factor Analyzers for Clustering Microbiome Data","authors":"Wangshu Tu, Sanjeena Subedi","doi":"10.1007/s00357-023-09452-0","DOIUrl":null,"url":null,"abstract":"The human microbiome plays an important role in human health and disease status. Next-generating sequencing technologies allow for quantifying the composition of the human microbiome. Clustering these microbiome data can provide valuable information by identifying underlying patterns across samples. Recently, Fang and Subedi (2023) proposed a logistic normal multinomial mixture model (LNM-MM) for clustering microbiome data. As microbiome data tends to be high dimensional, here, we develop a family of logistic normal multinomial factor analyzers (LNM-FA) by incorporating a factor analyzer structure in the LNM-MM. This family of models is more suitable for high-dimensional data as the number of free parameters in LNM-FA can be greatly reduced by assuming that the number of latent factors is small. Parameter estimation is done using a computationally efficient variant of the alternating expectation conditional maximization algorithm that utilizes variational Gaussian approximations. The proposed method is illustrated using simulated and real datasets.","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"40 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Classification","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00357-023-09452-0","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2
Abstract
The human microbiome plays an important role in human health and disease status. Next-generating sequencing technologies allow for quantifying the composition of the human microbiome. Clustering these microbiome data can provide valuable information by identifying underlying patterns across samples. Recently, Fang and Subedi (2023) proposed a logistic normal multinomial mixture model (LNM-MM) for clustering microbiome data. As microbiome data tends to be high dimensional, here, we develop a family of logistic normal multinomial factor analyzers (LNM-FA) by incorporating a factor analyzer structure in the LNM-MM. This family of models is more suitable for high-dimensional data as the number of free parameters in LNM-FA can be greatly reduced by assuming that the number of latent factors is small. Parameter estimation is done using a computationally efficient variant of the alternating expectation conditional maximization algorithm that utilizes variational Gaussian approximations. The proposed method is illustrated using simulated and real datasets.
期刊介绍:
To publish original and valuable papers in the field of classification, numerical taxonomy, multidimensional scaling and other ordination techniques, clustering, tree structures and other network models (with somewhat less emphasis on principal components analysis, factor analysis, and discriminant analysis), as well as associated models and algorithms for fitting them. Articles will support advances in methodology while demonstrating compelling substantive applications. Comprehensive review articles are also acceptable. Contributions will represent disciplines such as statistics, psychology, biology, information retrieval, anthropology, archeology, astronomy, business, chemistry, computer science, economics, engineering, geography, geology, linguistics, marketing, mathematics, medicine, political science, psychiatry, sociology, and soil science.