Keshari Nandan, Amit Agarwal, Somnath Bhowmick, Yogesh S. Chauhan
{"title":"Two-dimensional semiconductors based field-effect transistors: review of major milestones and challenges","authors":"Keshari Nandan, Amit Agarwal, Somnath Bhowmick, Yogesh S. Chauhan","doi":"10.3389/felec.2023.1277927","DOIUrl":null,"url":null,"abstract":"Two-dimensional (2-D) semiconductors are emerging as strong contenders for the future of Angstrom technology nodes. Their potential lies in enhanced device scaling and energy-efficient switching compared to traditional bulk semiconductors like Si, Ge, and III-V compounds. These materials offer significant advantages, particularly in ultra-thin devices with atomic scale thicknesses. Their unique structures enable the creation of one-dimensional nanoribbons and vertical and lateral heterostructures. This versatility in design, coupled with their distinctive properties, paves the way for efficient energy switching in electronic devices. Moreover, 2-D semiconductors offer opportunities for integrating metallic nanoribbons, carbon nanotubes (CNT), and graphene with their 2-D channel materials. This integration helps overcome lithography limitations for gate patterning, allowing the realization of ultra-short gate dimensions. Considering these factors, the potential of 2-D semiconductors in electronics is vast. This concise review focuses on the latest advancements and engineering strategies in 2-D logic devices.","PeriodicalId":73081,"journal":{"name":"Frontiers in electronics","volume":"36 4","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/felec.2023.1277927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Two-dimensional (2-D) semiconductors are emerging as strong contenders for the future of Angstrom technology nodes. Their potential lies in enhanced device scaling and energy-efficient switching compared to traditional bulk semiconductors like Si, Ge, and III-V compounds. These materials offer significant advantages, particularly in ultra-thin devices with atomic scale thicknesses. Their unique structures enable the creation of one-dimensional nanoribbons and vertical and lateral heterostructures. This versatility in design, coupled with their distinctive properties, paves the way for efficient energy switching in electronic devices. Moreover, 2-D semiconductors offer opportunities for integrating metallic nanoribbons, carbon nanotubes (CNT), and graphene with their 2-D channel materials. This integration helps overcome lithography limitations for gate patterning, allowing the realization of ultra-short gate dimensions. Considering these factors, the potential of 2-D semiconductors in electronics is vast. This concise review focuses on the latest advancements and engineering strategies in 2-D logic devices.