Yazılım Hata Tahmininde Farklı Alt Örnekleme ve Üst Örnekleme Yöntemlerinin Kıyaslanması

Özge ŞEN, Sinem BOZKURT KESER
{"title":"Yazılım Hata Tahmininde Farklı Alt Örnekleme ve Üst Örnekleme Yöntemlerinin Kıyaslanması","authors":"Özge ŞEN, Sinem BOZKURT KESER","doi":"10.54525/tbbmd.1235547","DOIUrl":null,"url":null,"abstract":"Bilgisayarları ve makineleri çalıştırmak üzere belirli fonksiyonların işletilebilmesi için kullanılan komutlar bütünü yazılım olarak adlandırılmaktadır. Günümüzde birçok alanda yapılan faaliyetler ve kullanılan uygulamalar, içerisinde farklı algoritmalarla tasarlanmış yazılımlar barındırır. Bu yazılımların kusursuz ve ihtiyaçları karşılayacak şekilde olması büyük önem teşkil etmektedir. Yazılımın kalitesi, yazılımın içerisinde hata barındırmaması hem yazılımı geliştiren kişilerin hem de yazılımı kullanan son kullanıcıların önem verdiği konulardır. Yazılım hata tahmini doğası gereği dengesiz sınıf problemi içerir. Bu çalışmada, öncelikle dengesiz sınıf problemi çözülmeye çalışılmıştır. Bu doğrultuda, farklı alt örnekleme ve üst örnekleme yöntemleri, literatürde araştırmacıların kullanımına açık NASA’nın PROMISE veri deposundan alınan CM1, KC1, KC2, JM1 ve PC1 veri kümelerinin üzerinde uygulanmıştır. Yazılım hata tahmini aşamasında ise farklı sınıflandırma algoritmaları karşılaştırılarak her bir veri kümesi için en uygun algoritma belirlenmiştir. Deney sonuçlarında on farklı örnekleme yöntemi ile veri kümelerindeki dengesiz sınıf problemi giderilmiş; on üç farklı sınıflandırma algoritması ile sınıflandırma işlemi yapılmıştır. 0,92 oranında AUC ölçütü ile en iyi sınıflandırma sonucu PC1 veri kümesinde elde edilmiştir. Bu çalışma ile yazılım hata tahmininde örnekleme yöntemleri ve uygun sınıflandırıcılar ile hata tahmininin başarımının daha iyi olabileceği gösterilmiştir. Elde edilen sonuçlar, literatürde yapılan çalışmalar ile karşılaştırılarak önerilen yöntemin üstünlüğü ve etkinliği kanıtlanmıştır.","PeriodicalId":485540,"journal":{"name":"Tbv bilgisayar bilimleri ve mühendisliği dergisi","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tbv bilgisayar bilimleri ve mühendisliği dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54525/tbbmd.1235547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bilgisayarları ve makineleri çalıştırmak üzere belirli fonksiyonların işletilebilmesi için kullanılan komutlar bütünü yazılım olarak adlandırılmaktadır. Günümüzde birçok alanda yapılan faaliyetler ve kullanılan uygulamalar, içerisinde farklı algoritmalarla tasarlanmış yazılımlar barındırır. Bu yazılımların kusursuz ve ihtiyaçları karşılayacak şekilde olması büyük önem teşkil etmektedir. Yazılımın kalitesi, yazılımın içerisinde hata barındırmaması hem yazılımı geliştiren kişilerin hem de yazılımı kullanan son kullanıcıların önem verdiği konulardır. Yazılım hata tahmini doğası gereği dengesiz sınıf problemi içerir. Bu çalışmada, öncelikle dengesiz sınıf problemi çözülmeye çalışılmıştır. Bu doğrultuda, farklı alt örnekleme ve üst örnekleme yöntemleri, literatürde araştırmacıların kullanımına açık NASA’nın PROMISE veri deposundan alınan CM1, KC1, KC2, JM1 ve PC1 veri kümelerinin üzerinde uygulanmıştır. Yazılım hata tahmini aşamasında ise farklı sınıflandırma algoritmaları karşılaştırılarak her bir veri kümesi için en uygun algoritma belirlenmiştir. Deney sonuçlarında on farklı örnekleme yöntemi ile veri kümelerindeki dengesiz sınıf problemi giderilmiş; on üç farklı sınıflandırma algoritması ile sınıflandırma işlemi yapılmıştır. 0,92 oranında AUC ölçütü ile en iyi sınıflandırma sonucu PC1 veri kümesinde elde edilmiştir. Bu çalışma ile yazılım hata tahmininde örnekleme yöntemleri ve uygun sınıflandırıcılar ile hata tahmininin başarımının daha iyi olabileceği gösterilmiştir. Elde edilen sonuçlar, literatürde yapılan çalışmalar ile karşılaştırılarak önerilen yöntemin üstünlüğü ve etkinliği kanıtlanmıştır.
软件缺陷预测中不同子采样和上采样方法的比较
用于操作计算机和机器运行某些功能的命令集被称为软件。如今,许多领域中使用的活动和应用程序都包含采用不同算法设计的软件。这些软件必须完美无瑕并满足需求,这一点非常重要。软件的质量和软件中不出现错误是软件开发人员和使用软件的最终用户都非常重视的问题。软件错误预测本质上涉及一个不平衡类问题。本研究首先尝试解决不平衡类问题。为此,研究人员在 CM1、KC1、KC2、JM1 和 PC1 数据集上采用了不同的子采样和超采样方法,这些数据集摘自 NASA 的 PROMISE 数据库,研究人员可从文献中获取这些数据集。在软件误差估计阶段,对不同的分类算法进行了比较,以确定最适合每个数据集的算法。在实验结果中,使用十种不同的取样方法消除了数据集中的不平衡类问题,并使用十三种不同的分类算法进行了分类。PC1 数据集的 AUC 为 0.92%,分类结果最佳。这项研究表明,软件故障预测中的抽样方法和适当的分类器可以提高故障预测的性能。所获得的结果与文献研究进行了比较,证明了所提出方法的优越性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信