Probability life calculation model of beam element application and study in welded structures reliability analysis

IF 1.9 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Shining LYu, Aihong Wang, Guanghui Zhang, Youshan Gao, Fenglin Yao
{"title":"Probability life calculation model of beam element application and study in welded structures reliability analysis","authors":"Shining LYu, Aihong Wang, Guanghui Zhang, Youshan Gao, Fenglin Yao","doi":"10.1177/16878132231199901","DOIUrl":null,"url":null,"abstract":"Statistical size and geometrical size are the main factors affecting the service life of mechanical structure calculation. To explore the reliability of the lifespan of beam structures, a probability lifespan numerical calculation method based on Vector Form Intrinsic Finite Element Method (VFIFEM) was proposed, and the method was verified through full lifespan experiments on I-beam welded structures. First, a fatigue fracture model that considers the coupling of residual stress (RS) and cyclic load variations was established. Based on this fatigue fracture model, a probability lifespan calculation model for beam elements was defined by proposing a cross-sectional shape correction coefficient and a position correction coefficient. The proposed probability lifespan model for beam elements was used to calculate the I-beam welded structure, and the calculated results were compared with the full lifespan experiment results, which were close in statistical results, with all experimental results falling within the [10%, 90%] interval except for one experiment. This method effectively couples the influence of statistical size and geometric size on probability lifespan, providing a new approach for the structure probability lifespan calculation in the future.","PeriodicalId":49110,"journal":{"name":"Advances in Mechanical Engineering","volume":"42 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/16878132231199901","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Statistical size and geometrical size are the main factors affecting the service life of mechanical structure calculation. To explore the reliability of the lifespan of beam structures, a probability lifespan numerical calculation method based on Vector Form Intrinsic Finite Element Method (VFIFEM) was proposed, and the method was verified through full lifespan experiments on I-beam welded structures. First, a fatigue fracture model that considers the coupling of residual stress (RS) and cyclic load variations was established. Based on this fatigue fracture model, a probability lifespan calculation model for beam elements was defined by proposing a cross-sectional shape correction coefficient and a position correction coefficient. The proposed probability lifespan model for beam elements was used to calculate the I-beam welded structure, and the calculated results were compared with the full lifespan experiment results, which were close in statistical results, with all experimental results falling within the [10%, 90%] interval except for one experiment. This method effectively couples the influence of statistical size and geometric size on probability lifespan, providing a new approach for the structure probability lifespan calculation in the future.
梁单元概率寿命计算模型在焊接结构可靠性分析中的应用与研究
统计尺寸和几何尺寸是影响机械结构使用寿命计算的主要因素。为探讨梁结构寿命的可靠性,提出了一种基于向量形式内禀有限元法(VFIFEM)的概率寿命数值计算方法,并通过工字钢焊接结构全寿命试验对该方法进行了验证。首先,建立了考虑残余应力与循环载荷耦合的疲劳断裂模型;在此疲劳断裂模型的基础上,通过提出截面形状修正系数和位置修正系数,定义了梁单元的概率寿命计算模型。采用所提出的梁单元概率寿命模型对工字钢焊接结构进行了计算,并将计算结果与全寿命试验结果进行了比较,结果表明,计算结果与全寿命试验结果的统计结果接近,除1个试验结果外,其余试验结果均落在[10%,90%]区间内。该方法有效地耦合了统计尺寸和几何尺寸对概率寿命的影响,为今后结构概率寿命的计算提供了一种新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mechanical Engineering
Advances in Mechanical Engineering 工程技术-机械工程
CiteScore
3.60
自引率
4.80%
发文量
353
审稿时长
6-12 weeks
期刊介绍: Advances in Mechanical Engineering (AIME) is a JCR Ranked, peer-reviewed, open access journal which publishes a wide range of original research and review articles. The journal Editorial Board welcomes manuscripts in both fundamental and applied research areas, and encourages submissions which contribute novel and innovative insights to the field of mechanical engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信