Deep ensemble learning using a demographic machine learning risk stratifier for binary classification of skin lesions using dermatoscopic images

Ansh Roge, Patrick Ting, Andrew Chern, William Ting
{"title":"Deep ensemble learning using a demographic machine learning risk stratifier for binary classification of skin lesions using dermatoscopic images","authors":"Ansh Roge, Patrick Ting, Andrew Chern, William Ting","doi":"10.21037/jmai-23-38","DOIUrl":null,"url":null,"abstract":"Background: Skin lesion classification through dermatoscopic images is the most common method for non-invasive diagnostics of dermatologic conditions. Feature extraction through deep learning (DL) based convolutional neural networks (CNNs) provides insight into differential attributes of skin lesions that may pertain to its malignancy. In this study, we sought to improve the performance of standard CNN architectures in skin lesion classification by providing a machine learning (ML)-derived risk score from patient demographic data.","PeriodicalId":73815,"journal":{"name":"Journal of medical artificial intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of medical artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21037/jmai-23-38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Skin lesion classification through dermatoscopic images is the most common method for non-invasive diagnostics of dermatologic conditions. Feature extraction through deep learning (DL) based convolutional neural networks (CNNs) provides insight into differential attributes of skin lesions that may pertain to its malignancy. In this study, we sought to improve the performance of standard CNN architectures in skin lesion classification by providing a machine learning (ML)-derived risk score from patient demographic data.
使用人口统计学机器学习风险分层器的深度集成学习,利用皮肤镜图像对皮肤病变进行二分类
背景:通过皮肤镜图像对皮肤病变进行分类是对皮肤疾病进行无创诊断最常用的方法。通过基于深度学习(DL)的卷积神经网络(cnn)进行特征提取,可以深入了解可能与恶性肿瘤有关的皮肤病变的差异属性。在这项研究中,我们试图通过从患者人口统计数据中提供机器学习(ML)衍生的风险评分来提高标准CNN架构在皮肤病变分类中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信