Mo Yang, Hao Xuan, Tao Qin, Yikun Wang, Yuebin Zhou, Wen Zhang
{"title":"Effect of laminate parameters on nonlinear dynamic characteristic of the composite rotor-bearing system with pedestal looseness","authors":"Mo Yang, Hao Xuan, Tao Qin, Yikun Wang, Yuebin Zhou, Wen Zhang","doi":"10.1177/16878132231189082","DOIUrl":null,"url":null,"abstract":"The nonlinear dynamics of the composite shaft rotor-bearing system are greatly affected by the orientation angle layer and its proportion of the ply, i.e., the ratio of the orientation angle layer in the laminate. This paper presents a nonlinear dynamic analysis of a composite rotor-bearing system with pedestal looseness that considers the nonlinear oil film force and the pedestal looseness. Nonlinear phenomena including periodic, quasi-periodic, and chaotic motions are analyzed. The analysis results indicate that the stiffness and damping coefficients of a composite shaft tube can be influenced strongly by the laminate parameters, which can in turn affect the instability speed of the rotor system. To enhance the oil film instability speed of the composite rotor system, it is essential to maximize the ratio of the small orientation angle layer or the ±45° layer. Additionally, increasing the ratio of the small orientation angle layers in the shaft tube leads to a higher rotational speed for loosening instability. The research results obtained in this paper have important theoretical value for the design of composite rotor-bearing systems.","PeriodicalId":49110,"journal":{"name":"Advances in Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/16878132231189082","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The nonlinear dynamics of the composite shaft rotor-bearing system are greatly affected by the orientation angle layer and its proportion of the ply, i.e., the ratio of the orientation angle layer in the laminate. This paper presents a nonlinear dynamic analysis of a composite rotor-bearing system with pedestal looseness that considers the nonlinear oil film force and the pedestal looseness. Nonlinear phenomena including periodic, quasi-periodic, and chaotic motions are analyzed. The analysis results indicate that the stiffness and damping coefficients of a composite shaft tube can be influenced strongly by the laminate parameters, which can in turn affect the instability speed of the rotor system. To enhance the oil film instability speed of the composite rotor system, it is essential to maximize the ratio of the small orientation angle layer or the ±45° layer. Additionally, increasing the ratio of the small orientation angle layers in the shaft tube leads to a higher rotational speed for loosening instability. The research results obtained in this paper have important theoretical value for the design of composite rotor-bearing systems.
期刊介绍:
Advances in Mechanical Engineering (AIME) is a JCR Ranked, peer-reviewed, open access journal which publishes a wide range of original research and review articles. The journal Editorial Board welcomes manuscripts in both fundamental and applied research areas, and encourages submissions which contribute novel and innovative insights to the field of mechanical engineering