Learning-based Optimal Quantum Switch Scheduling

Q4 Computer Science
Jiatai Huang, Longbo Huang
{"title":"Learning-based Optimal Quantum Switch Scheduling","authors":"Jiatai Huang, Longbo Huang","doi":"10.1145/3626570.3626597","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the problem of optimal scheduling for quantum switches with dynamic demand and random entanglement successes. Different from prior results that often focus on (known) fixed entanglement success probabilities, we assume zero prior knowledge about the entanglement success probabilities and allow them to vary from time to time in an adversarial manner. We propose a learning-based algorithm QSSoftMW based on the framework developed in [1], which combines adversarial learning and Lyapunov queue analysis. We show that QSSoftMW is able to automatically adapt to the changing system statistics and ensure quantum switch stability.","PeriodicalId":35745,"journal":{"name":"Performance Evaluation Review","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Performance Evaluation Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3626570.3626597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the problem of optimal scheduling for quantum switches with dynamic demand and random entanglement successes. Different from prior results that often focus on (known) fixed entanglement success probabilities, we assume zero prior knowledge about the entanglement success probabilities and allow them to vary from time to time in an adversarial manner. We propose a learning-based algorithm QSSoftMW based on the framework developed in [1], which combines adversarial learning and Lyapunov queue analysis. We show that QSSoftMW is able to automatically adapt to the changing system statistics and ensure quantum switch stability.
基于学习的最优量子交换机调度
本文研究具有动态需求和随机纠缠成功的量子交换机的最优调度问题。与通常关注(已知的)固定纠缠成功概率的先前结果不同,我们假设纠缠成功概率的先验知识为零,并允许它们以对抗的方式不时变化。我们基于[1]开发的框架提出了一种基于学习的算法QSSoftMW,该算法结合了对抗性学习和Lyapunov队列分析。研究表明,QSSoftMW能够自动适应系统统计量的变化,并保证量子开关的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Performance Evaluation Review
Performance Evaluation Review Computer Science-Computer Networks and Communications
CiteScore
1.00
自引率
0.00%
发文量
193
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信