Fitting with matrix exponential mixtures generated by discrete probabilistic scaling

Q4 Computer Science
Julianna Bor, Giuliano Casale, William Knottenbelt, Evgenia Smirni, Andreas Stathopoulos
{"title":"Fitting with matrix exponential mixtures generated by discrete probabilistic scaling","authors":"Julianna Bor, Giuliano Casale, William Knottenbelt, Evgenia Smirni, Andreas Stathopoulos","doi":"10.1145/3626570.3626577","DOIUrl":null,"url":null,"abstract":"Matrix exponential (ME) distributions generalize phase-type distributions; however, their use in queueing theory is hampered by the difficulty of checking their feasibility. We propose a novel ME fitting algorithm that produces a valid distribution by construction. The ME distribution used during the fitting is a product of independent random variables that are easy to control in isolation. Consequently, the calculation of the CDF and the Mellin transform factorizes, making it possible to use these measures for the fitting without significant restriction on the distribution order. Trace-driven queueing simulations indicate that the resulting distributions yield highly accurate results.","PeriodicalId":35745,"journal":{"name":"Performance Evaluation Review","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Performance Evaluation Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3626570.3626577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Matrix exponential (ME) distributions generalize phase-type distributions; however, their use in queueing theory is hampered by the difficulty of checking their feasibility. We propose a novel ME fitting algorithm that produces a valid distribution by construction. The ME distribution used during the fitting is a product of independent random variables that are easy to control in isolation. Consequently, the calculation of the CDF and the Mellin transform factorizes, making it possible to use these measures for the fitting without significant restriction on the distribution order. Trace-driven queueing simulations indicate that the resulting distributions yield highly accurate results.
离散概率标度生成的矩阵指数混合拟合
矩阵指数(ME)分布推广了相型分布;然而,它们在排队理论中的应用由于难以检验其可行性而受到阻碍。我们提出了一种新的ME拟合算法,通过构造生成有效的分布。拟合过程中使用的ME分布是易于孤立控制的独立随机变量的乘积。因此,CDF和Mellin变换的计算简化了,使得可以使用这些措施进行拟合,而不受分布顺序的显著限制。跟踪驱动的排队模拟表明,所得到的分布产生了高度精确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Performance Evaluation Review
Performance Evaluation Review Computer Science-Computer Networks and Communications
CiteScore
1.00
自引率
0.00%
发文量
193
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信