Special Issue on The ACM SIGMETRICS Workshop on Measurements for Self-Driving Networks

Q4 Computer Science
Arpit Gupta, Ramakrishnan Durairajan, Walter Willinger
{"title":"Special Issue on The ACM SIGMETRICS Workshop on Measurements for Self-Driving Networks","authors":"Arpit Gupta, Ramakrishnan Durairajan, Walter Willinger","doi":"10.1145/3626570.3626601","DOIUrl":null,"url":null,"abstract":"The design and implementation of autonomous or \"selfdriving networks\" represent some of today's most significant challenges in networking research. The vision for these networks is that they will be able to make management and control decisions in real time, typically without human intervention. Recent technological advancements, like SDN and 5G networks, along with scientific innovations such as XAI and transformers, have paved the way for this vision. Key innovations include: (1) fully programmable, protocol-independent data planes and the languages to program them; (2) scalable platforms capable of processing distributed streaming data, bolstered by the latest tools and software for data analysis and machine learning (ML).","PeriodicalId":35745,"journal":{"name":"Performance Evaluation Review","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Performance Evaluation Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3626570.3626601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

The design and implementation of autonomous or "selfdriving networks" represent some of today's most significant challenges in networking research. The vision for these networks is that they will be able to make management and control decisions in real time, typically without human intervention. Recent technological advancements, like SDN and 5G networks, along with scientific innovations such as XAI and transformers, have paved the way for this vision. Key innovations include: (1) fully programmable, protocol-independent data planes and the languages to program them; (2) scalable platforms capable of processing distributed streaming data, bolstered by the latest tools and software for data analysis and machine learning (ML).
ACM SIGMETRICS自驾车网络测量研讨会特刊
自动驾驶或“自动驾驶网络”的设计和实现是当今网络研究中最重大的挑战之一。这些网络的愿景是,它们将能够实时做出管理和控制决策,通常无需人工干预。最近的技术进步,如SDN和5G网络,以及XAI和变压器等科学创新,为这一愿景铺平了道路。关键创新包括:(1)完全可编程、协议无关的数据平面和编程语言;(2)能够处理分布式流数据的可扩展平台,由最新的数据分析和机器学习工具和软件提供支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Performance Evaluation Review
Performance Evaluation Review Computer Science-Computer Networks and Communications
CiteScore
1.00
自引率
0.00%
发文量
193
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信