{"title":"Нечітка достовірна кластеризація великих масивів даних з гіпереліпсоїдальними класами з довільною орієнтацією осей","authors":"А. Ю. Шафроненко, Є. В. Бодянський","doi":"10.30748/nitps.2023.50.11","DOIUrl":null,"url":null,"abstract":"Проблема нечіткої кластеризації даних є важливою проблемою, яка часто зустрічається в різноманітних задачах інтелектуального аналізу даних. Для вирішення цих задач відомі методи потребують, щоб вектори-спостереження надходили з тих даних, які належать лише одному кластеру, але природніша та ситуація, коли вектор-спостереження може належати більше ніж одному кластеру або класу. Із таким родом проблем найкраще справляються нечіткі методи кластеризації, які синтезовані з урахуванням взаємного перетинання класів, які формуються в процесі аналізу даних. Найбільш поширені алгоритми нечіткої кластеризації – імовірнісні методи нечіткої кластеризації. В той же час, цей підхід має суттєві недоліки, пов'язані зі строгими “імовірнісними” обмеженнями щодо рівня належності та підвищеною чутливістю до аномальних спостережень, які часто присутні у вихідних наборах даних. В якості альтернативи імовірнісним методам нечіткої кластеризації було запропоновано метод достовірної нечіткої кластеризації з рекурентною модифікацією, який базується на підході правдоподібності та алгоритмі Густафсона-Кесселя для нечіткої кластеризації.","PeriodicalId":52997,"journal":{"name":"Nauka i tekhnika Povitrianikh Sil Zbroinikh Sil Ukrayini","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nauka i tekhnika Povitrianikh Sil Zbroinikh Sil Ukrayini","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30748/nitps.2023.50.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Проблема нечіткої кластеризації даних є важливою проблемою, яка часто зустрічається в різноманітних задачах інтелектуального аналізу даних. Для вирішення цих задач відомі методи потребують, щоб вектори-спостереження надходили з тих даних, які належать лише одному кластеру, але природніша та ситуація, коли вектор-спостереження може належати більше ніж одному кластеру або класу. Із таким родом проблем найкраще справляються нечіткі методи кластеризації, які синтезовані з урахуванням взаємного перетинання класів, які формуються в процесі аналізу даних. Найбільш поширені алгоритми нечіткої кластеризації – імовірнісні методи нечіткої кластеризації. В той же час, цей підхід має суттєві недоліки, пов'язані зі строгими “імовірнісними” обмеженнями щодо рівня належності та підвищеною чутливістю до аномальних спостережень, які часто присутні у вихідних наборах даних. В якості альтернативи імовірнісним методам нечіткої кластеризації було запропоновано метод достовірної нечіткої кластеризації з рекурентною модифікацією, який базується на підході правдоподібності та алгоритмі Густафсона-Кесселя для нечіткої кластеризації.