{"title":"A Novel Goal oriented Sampling Method for Improving the Convergence Rate of Sampling based Path Planning for Autonomous Mobile Robot Navigation","authors":"Sivasankar Ganesan, Senthil Kumar Natarajan, Asokan Thondiyath","doi":"10.14429/dsj.73.17888","DOIUrl":null,"url":null,"abstract":"Autonomous Mobile Robots' performance relies on intelligent motion planning algorithms. In autonomous mobile robots, sampling-based path-planning algorithms are widely used. One of the efficient sampling-based path planning algorithms is the Rapidly Exploring Random Tree (RRT). However, the solution provided by RRT is suboptimal. An RRT extension known as RRT* is optimal, but it takes time to converge. To improve the RRT* slow convergence problem, a goal-oriented sampling-based RRT* algorithm known as GS-RRT* is proposed in this paper. The focus of the proposed research work is to reduce unwanted sample exploration and solve the slow convergence problem of RRT* by taking more samples in the vicinity of the goal region. The proposed research work is validated in three different environments with a map size of 384*384 and compared to the existing algorithms: RRT, Goal-directed RRT(G-RRT), RRT*, and Informed-RRT*. The proposed research work is compared with existing algorithms using four metrics: path length, time to find the solution, the number of nodes visited, and the convergence rate. The validation is done in the Gazebo Simulation and on a TurtleBot3 mobile robot using the Robotics Operating System (ROS). The numerical findings show that the proposed research work improves the convergence rate by an average of 33% over RRT* and 27% over Informed RRT*, and the node exploration is 26% better than RRT* and 20% better than Informed RRT*.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14429/dsj.73.17888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Autonomous Mobile Robots' performance relies on intelligent motion planning algorithms. In autonomous mobile robots, sampling-based path-planning algorithms are widely used. One of the efficient sampling-based path planning algorithms is the Rapidly Exploring Random Tree (RRT). However, the solution provided by RRT is suboptimal. An RRT extension known as RRT* is optimal, but it takes time to converge. To improve the RRT* slow convergence problem, a goal-oriented sampling-based RRT* algorithm known as GS-RRT* is proposed in this paper. The focus of the proposed research work is to reduce unwanted sample exploration and solve the slow convergence problem of RRT* by taking more samples in the vicinity of the goal region. The proposed research work is validated in three different environments with a map size of 384*384 and compared to the existing algorithms: RRT, Goal-directed RRT(G-RRT), RRT*, and Informed-RRT*. The proposed research work is compared with existing algorithms using four metrics: path length, time to find the solution, the number of nodes visited, and the convergence rate. The validation is done in the Gazebo Simulation and on a TurtleBot3 mobile robot using the Robotics Operating System (ROS). The numerical findings show that the proposed research work improves the convergence rate by an average of 33% over RRT* and 27% over Informed RRT*, and the node exploration is 26% better than RRT* and 20% better than Informed RRT*.