Knapsack and the power word problem in solvable Baumslag–Solitar groups

IF 0.5 2区 数学 Q3 MATHEMATICS
Moses Ganardi, Markus Lohrey, Georg Zetzsche
{"title":"Knapsack and the power word problem in solvable Baumslag–Solitar groups","authors":"Moses Ganardi, Markus Lohrey, Georg Zetzsche","doi":"10.1142/s0218196723500285","DOIUrl":null,"url":null,"abstract":"We prove that the power word problem for certain metabelian subgroups of [Formula: see text] (including the solvable Baumslag–Solitar groups [Formula: see text]) belongs to the circuit complexity class [Formula: see text]. In the power word problem, the input consists of group elements [Formula: see text] and binary encoded integers [Formula: see text] and it is asked whether [Formula: see text] holds. Moreover, we prove that the knapsack problem for [Formula: see text] is [Formula: see text]-complete. In the knapsack problem, the input consists of group elements [Formula: see text] and it is asked whether the equation [Formula: see text] has a solution in [Formula: see text]. For the more general case of a system of so-called exponent equations, where the exponent variables [Formula: see text] can occur multiple times, we show that solvability is undecidable for [Formula: see text].","PeriodicalId":13756,"journal":{"name":"International Journal of Algebra and Computation","volume":"181 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Algebra and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218196723500285","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

We prove that the power word problem for certain metabelian subgroups of [Formula: see text] (including the solvable Baumslag–Solitar groups [Formula: see text]) belongs to the circuit complexity class [Formula: see text]. In the power word problem, the input consists of group elements [Formula: see text] and binary encoded integers [Formula: see text] and it is asked whether [Formula: see text] holds. Moreover, we prove that the knapsack problem for [Formula: see text] is [Formula: see text]-complete. In the knapsack problem, the input consists of group elements [Formula: see text] and it is asked whether the equation [Formula: see text] has a solution in [Formula: see text]. For the more general case of a system of so-called exponent equations, where the exponent variables [Formula: see text] can occur multiple times, we show that solvability is undecidable for [Formula: see text].
可解Baumslag-Solitar群中的背包与幂词问题
证明了[公式:见文]的某些亚元子群(包括可解的Baumslag-Solitar群[公式:见文])的幂词问题属于电路复杂度类[公式:见文]。在幂词问题中,输入由群元素[Formula: see text]和二进制编码的整数[Formula: see text]组成,并询问[Formula: see text]是否成立。此外,我们证明了[公式:见文]的背包问题是[公式:见文]完全的。在背包问题中,输入由群元素[公式:见文]组成,问方程[公式:见文]在[公式:见文]中是否有解。对于所谓的指数方程系统的更一般的情况,其中指数变量[公式:见文本]可以出现多次,我们表明可解性是不可判定的[公式:见文本]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
66
审稿时长
6-12 weeks
期刊介绍: The International Journal of Algebra and Computation publishes high quality original research papers in combinatorial, algorithmic and computational aspects of algebra (including combinatorial and geometric group theory and semigroup theory, algorithmic aspects of universal algebra, computational and algorithmic commutative algebra, probabilistic models related to algebraic structures, random algebraic structures), and gives a preference to papers in the areas of mathematics represented by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信