{"title":"Hardness of (Semiuniform) MLWE with Short Distributions Using the Rényi Divergence","authors":"Wenjuan Jia, Baocang Wang","doi":"10.1049/2023/2104380","DOIUrl":null,"url":null,"abstract":"The module learning with errors (MLWE) problem has attracted considerable attention for its tradeoff between security and efficiency. The quantum/classical worst-case to average-case hardness for the MLWE problem (or more exactly, a family of problems) has been established, but most of the known results require the seed distribution to be the uniform distribution. In the present paper, we show that, using the noise flooding technique based on the Rényi divergence, the search MLWE problem with uniform <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\"> <mi>B</mi> </math> -bounded secret distribution for <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\"> <mn>1</mn> <mo>≤</mo> <mi>B</mi> <mo>≪</mo> <mi>q</mi> </math> can still be hard for some seed distributions that are not (even computationally indistinguishable from) the uniform distribution under the standard MLWE assumption. Specifically, we show that if the seed distribution is a semiuniform distribution (namely, the seed distribution can be publicly derived from and has a “small difference” to the uniform distribution), then for suitable parameter choices, the search MLWE problem with uniform bounded secret distribution is hard under the standard MLWE assumption. Moreover, we also show that under the appropriate setting of parameters, the search MLWE problem with uniform bounded noise distribution is at least as hard as the standard MLWE assumption using a different approach than the one used by Boudgoust et al. in [JoC 2023].","PeriodicalId":50380,"journal":{"name":"IET Information Security","volume":"23 6","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Information Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/2023/2104380","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The module learning with errors (MLWE) problem has attracted considerable attention for its tradeoff between security and efficiency. The quantum/classical worst-case to average-case hardness for the MLWE problem (or more exactly, a family of problems) has been established, but most of the known results require the seed distribution to be the uniform distribution. In the present paper, we show that, using the noise flooding technique based on the Rényi divergence, the search MLWE problem with uniform -bounded secret distribution for can still be hard for some seed distributions that are not (even computationally indistinguishable from) the uniform distribution under the standard MLWE assumption. Specifically, we show that if the seed distribution is a semiuniform distribution (namely, the seed distribution can be publicly derived from and has a “small difference” to the uniform distribution), then for suitable parameter choices, the search MLWE problem with uniform bounded secret distribution is hard under the standard MLWE assumption. Moreover, we also show that under the appropriate setting of parameters, the search MLWE problem with uniform bounded noise distribution is at least as hard as the standard MLWE assumption using a different approach than the one used by Boudgoust et al. in [JoC 2023].
期刊介绍:
IET Information Security publishes original research papers in the following areas of information security and cryptography. Submitting authors should specify clearly in their covering statement the area into which their paper falls.
Scope:
Access Control and Database Security
Ad-Hoc Network Aspects
Anonymity and E-Voting
Authentication
Block Ciphers and Hash Functions
Blockchain, Bitcoin (Technical aspects only)
Broadcast Encryption and Traitor Tracing
Combinatorial Aspects
Covert Channels and Information Flow
Critical Infrastructures
Cryptanalysis
Dependability
Digital Rights Management
Digital Signature Schemes
Digital Steganography
Economic Aspects of Information Security
Elliptic Curve Cryptography and Number Theory
Embedded Systems Aspects
Embedded Systems Security and Forensics
Financial Cryptography
Firewall Security
Formal Methods and Security Verification
Human Aspects
Information Warfare and Survivability
Intrusion Detection
Java and XML Security
Key Distribution
Key Management
Malware
Multi-Party Computation and Threshold Cryptography
Peer-to-peer Security
PKIs
Public-Key and Hybrid Encryption
Quantum Cryptography
Risks of using Computers
Robust Networks
Secret Sharing
Secure Electronic Commerce
Software Obfuscation
Stream Ciphers
Trust Models
Watermarking and Fingerprinting
Special Issues. Current Call for Papers:
Security on Mobile and IoT devices - https://digital-library.theiet.org/files/IET_IFS_SMID_CFP.pdf