Efficient slope reliability analysis under soil spatial variability using maximum entropy distribution with fractional moments

IF 9.4 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Chengxin Feng, Marcos A. Valdebenito, Marcin Chwała, Kang Liao, Matteo Broggi, Michael Beer
{"title":"Efficient slope reliability analysis under soil spatial variability using maximum entropy distribution with fractional moments","authors":"Chengxin Feng, Marcos A. Valdebenito, Marcin Chwała, Kang Liao, Matteo Broggi, Michael Beer","doi":"10.1016/j.jrmge.2023.09.006","DOIUrl":null,"url":null,"abstract":"Spatial variability of soil properties imposes a challenge for practical analysis and design in geotechnical engineering. The latter is particularly true for slope stability assessment, where the effects of uncertainty are synthesized in the so-called probability of failure. This probability quantifies the reliability of a slope and its numerical calculation is usually quite involved from a numerical viewpoint. In view of this issue, this paper proposes an approach for failure probability assessment based on Latinized partially stratified sampling and maximum entropy distribution with fractional moments. The spatial variability of geotechnical properties is represented by means of random fields and the Karhunen-Loève expansion. Then, failure probabilities are estimated employing maximum entropy distribution with fractional moments. The application of the proposed approach is examined with two examples: a case study of an undrained slope and a case study of a slope with cross-correlated random fields of strength parameters under a drained slope. The results show that the proposed approach has excellent accuracy and high efficiency, and it can be applied straightforwardly to similar geotechnical engineering problems.","PeriodicalId":54219,"journal":{"name":"Journal of Rock Mechanics and Geotechnical Engineering","volume":"27 4","pages":"0"},"PeriodicalIF":9.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rock Mechanics and Geotechnical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jrmge.2023.09.006","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Spatial variability of soil properties imposes a challenge for practical analysis and design in geotechnical engineering. The latter is particularly true for slope stability assessment, where the effects of uncertainty are synthesized in the so-called probability of failure. This probability quantifies the reliability of a slope and its numerical calculation is usually quite involved from a numerical viewpoint. In view of this issue, this paper proposes an approach for failure probability assessment based on Latinized partially stratified sampling and maximum entropy distribution with fractional moments. The spatial variability of geotechnical properties is represented by means of random fields and the Karhunen-Loève expansion. Then, failure probabilities are estimated employing maximum entropy distribution with fractional moments. The application of the proposed approach is examined with two examples: a case study of an undrained slope and a case study of a slope with cross-correlated random fields of strength parameters under a drained slope. The results show that the proposed approach has excellent accuracy and high efficiency, and it can be applied straightforwardly to similar geotechnical engineering problems.
基于分数阶矩最大熵分布的土壤空间变异性下边坡可靠度分析
土壤性质的空间变异性对岩土工程的实际分析和设计提出了挑战。后者尤其适用于边坡稳定性评估,其中不确定性的影响综合在所谓的破坏概率中。这种概率量化了边坡的可靠度,从数值的角度来看,它的数值计算通常是相当复杂的。针对这一问题,提出了一种基于拉丁化部分分层抽样和分数阶矩最大熵分布的失效概率评估方法。岩土力学性质的空间变异性由随机场和karhunen - lo展开表示。然后,利用分数阶矩最大熵分布估计失效概率。本文通过两个实例检验了该方法的应用:一个是不排水边坡的实例研究,另一个是排水边坡下具有强度参数互相关随机场的边坡的实例研究。结果表明,该方法精度高、效率高,可直接应用于类似岩土工程问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Rock Mechanics and Geotechnical Engineering
Journal of Rock Mechanics and Geotechnical Engineering Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
11.60
自引率
6.80%
发文量
227
审稿时长
48 days
期刊介绍: The Journal of Rock Mechanics and Geotechnical Engineering (JRMGE), overseen by the Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, is dedicated to the latest advancements in rock mechanics and geotechnical engineering. It serves as a platform for global scholars to stay updated on developments in various related fields including soil mechanics, foundation engineering, civil engineering, mining engineering, hydraulic engineering, petroleum engineering, and engineering geology. With a focus on fostering international academic exchange, JRMGE acts as a conduit between theoretical advancements and practical applications. Topics covered include new theories, technologies, methods, experiences, in-situ and laboratory tests, developments, case studies, and timely reviews within the realm of rock mechanics and geotechnical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信