Some measure rigidity and equidistribution results for β-maps

Pub Date : 2023-10-23 DOI:10.1017/etds.2023.75
NEVO FISHBEIN
{"title":"Some measure rigidity and equidistribution results for <i>β</i>-maps","authors":"NEVO FISHBEIN","doi":"10.1017/etds.2023.75","DOIUrl":null,"url":null,"abstract":"Abstract We prove $\\times a \\times b$ measure rigidity for multiplicatively independent pairs when $a\\in \\mathbb {N}$ and $b&gt;1$ is a ‘specified’ real number (the b -expansion of $1$ has a tail or bounded runs of $0$ s) under a positive entropy condition. This is done by proving a mean decay of the Fourier series of the point masses average along $\\times b$ orbits. We also prove a quantitative version of this decay under stronger conditions on the $\\times a$ invariant measure. The quantitative version together with the $\\times b$ invariance of the limit measure is a step toward a general Host-type pointwise equidistribution theorem in which the equidistribution is for Parry measure instead of Lebesgue. We show that finite memory length measures on the a -shift meet the mentioned conditions for mean convergence. Our main proof relies on techniques of Hochman.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/etds.2023.75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We prove $\times a \times b$ measure rigidity for multiplicatively independent pairs when $a\in \mathbb {N}$ and $b>1$ is a ‘specified’ real number (the b -expansion of $1$ has a tail or bounded runs of $0$ s) under a positive entropy condition. This is done by proving a mean decay of the Fourier series of the point masses average along $\times b$ orbits. We also prove a quantitative version of this decay under stronger conditions on the $\times a$ invariant measure. The quantitative version together with the $\times b$ invariance of the limit measure is a step toward a general Host-type pointwise equidistribution theorem in which the equidistribution is for Parry measure instead of Lebesgue. We show that finite memory length measures on the a -shift meet the mentioned conditions for mean convergence. Our main proof relies on techniques of Hochman.
分享
查看原文
一些β-图的测量刚度和均匀分布结果
摘要证明了在正熵条件下,当$a\in \mathbb {N}$和$b>1$是一个“指定”实数($1$的b -展开式有尾或$0$ s的有界运行)时,$\乘以a\乘以b$的度量刚性。这是通过证明点质量的傅里叶级数沿轨道的平均衰减来实现的。我们还证明了在更强的条件下,在$\乘以$不变测度上的这种衰减的定量版本。定量版与极限测度的$\ * b$不变性是向广义host型点向均匀分布定理迈出的一步,其中均匀分布是Parry测度而不是Lebesgue测度。我们证明了a -移位上的有限记忆长度度量满足上述的平均收敛条件。我们的主要证明依靠的是霍奇曼的技巧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信