{"title":"Existence and nonexistence of solutions for an approximation of the Paneitz problem on spheres","authors":"Kamal Ould Bouh","doi":"10.1186/s13661-023-01789-0","DOIUrl":null,"url":null,"abstract":"Abstract This paper is devoted to studying the nonlinear problem with slightly subcritical and supercritical exponents $(S_{\\pm \\varepsilon}): \\Delta ^{2}u-c_{n}\\Delta u+d_{n}u = Ku^{ \\frac{n+4}{n-4}\\pm \\varepsilon}$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>S</mml:mi> <mml:mrow> <mml:mo>±</mml:mo> <mml:mi>ε</mml:mi> </mml:mrow> </mml:msub> <mml:mo>)</mml:mo> <mml:mo>:</mml:mo> <mml:msup> <mml:mi>Δ</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mi>u</mml:mi> <mml:mo>−</mml:mo> <mml:msub> <mml:mi>c</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mi>Δ</mml:mi> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>d</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mi>K</mml:mi> <mml:msup> <mml:mi>u</mml:mi> <mml:mrow> <mml:mfrac> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>−</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> </mml:mfrac> <mml:mo>±</mml:mo> <mml:mi>ε</mml:mi> </mml:mrow> </mml:msup> </mml:math> , $u>0$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>u</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:math> on $S^{n}$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>S</mml:mi> <mml:mi>n</mml:mi> </mml:msup> </mml:math> , where $n\\geq 5$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>n</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>5</mml:mn> </mml:math> , ε is a small positive parameter and K is a smooth positive function on $S^{n}$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>S</mml:mi> <mml:mi>n</mml:mi> </mml:msup> </mml:math> . We construct some solutions of $(S_{-\\varepsilon})$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>S</mml:mi> <mml:mrow> <mml:mo>−</mml:mo> <mml:mi>ε</mml:mi> </mml:mrow> </mml:msub> <mml:mo>)</mml:mo> </mml:math> that blow up at one critical point of K . However, we prove also a nonexistence result of single-peaked solutions for the supercritical equation $(S_{+\\varepsilon})$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>S</mml:mi> <mml:mrow> <mml:mo>+</mml:mo> <mml:mi>ε</mml:mi> </mml:mrow> </mml:msub> <mml:mo>)</mml:mo> </mml:math> .","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13661-023-01789-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract This paper is devoted to studying the nonlinear problem with slightly subcritical and supercritical exponents $(S_{\pm \varepsilon}): \Delta ^{2}u-c_{n}\Delta u+d_{n}u = Ku^{ \frac{n+4}{n-4}\pm \varepsilon}$ (S±ε):Δ2u−cnΔu+dnu=Kun+4n−4±ε , $u>0$ u>0 on $S^{n}$ Sn , where $n\geq 5$ n≥5 , ε is a small positive parameter and K is a smooth positive function on $S^{n}$ Sn . We construct some solutions of $(S_{-\varepsilon})$ (S−ε) that blow up at one critical point of K . However, we prove also a nonexistence result of single-peaked solutions for the supercritical equation $(S_{+\varepsilon})$ (S+ε) .
抽象非线性问题》这篇文章devoted to studying有点subcritical和supercritical exponents (S_ {pm \ varepsilon}美元):\ ^{2}三角洲三角洲u-c_ {n} \我^ d_ {n} u + u = {\ frac {n + 4} {n-4的pm \ varepsilon}美元(S±ε):Δ2−c nΔu + d u n K u = u n + 4−4±ε,u>美元;u > 0美元;0美元在S ^ {n} $ n, n \ geq美元哪里5 n≥5美元,ε是a small积极和K是一个流畅的积极功能参数on S ^ {n} $ n美元。我们构造的一些解决方案(S_美元{- \ varepsilon}) (S−美元ε)那吹起来at一号连接point of K。,但是,我们也证明a nonexistence single-peaked解决方案》的论点supercritical equation (S_美元{\ varepsilon})美元(S +ε)。
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.