{"title":"Existence and nonexistence of solutions for an approximation of the Paneitz problem on spheres","authors":"Kamal Ould Bouh","doi":"10.1186/s13661-023-01789-0","DOIUrl":null,"url":null,"abstract":"Abstract This paper is devoted to studying the nonlinear problem with slightly subcritical and supercritical exponents $(S_{\\pm \\varepsilon}): \\Delta ^{2}u-c_{n}\\Delta u+d_{n}u = Ku^{ \\frac{n+4}{n-4}\\pm \\varepsilon}$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>S</mml:mi> <mml:mrow> <mml:mo>±</mml:mo> <mml:mi>ε</mml:mi> </mml:mrow> </mml:msub> <mml:mo>)</mml:mo> <mml:mo>:</mml:mo> <mml:msup> <mml:mi>Δ</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mi>u</mml:mi> <mml:mo>−</mml:mo> <mml:msub> <mml:mi>c</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mi>Δ</mml:mi> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>d</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mi>K</mml:mi> <mml:msup> <mml:mi>u</mml:mi> <mml:mrow> <mml:mfrac> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>−</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> </mml:mfrac> <mml:mo>±</mml:mo> <mml:mi>ε</mml:mi> </mml:mrow> </mml:msup> </mml:math> , $u>0$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>u</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:math> on $S^{n}$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>S</mml:mi> <mml:mi>n</mml:mi> </mml:msup> </mml:math> , where $n\\geq 5$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>n</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>5</mml:mn> </mml:math> , ε is a small positive parameter and K is a smooth positive function on $S^{n}$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>S</mml:mi> <mml:mi>n</mml:mi> </mml:msup> </mml:math> . We construct some solutions of $(S_{-\\varepsilon})$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>S</mml:mi> <mml:mrow> <mml:mo>−</mml:mo> <mml:mi>ε</mml:mi> </mml:mrow> </mml:msub> <mml:mo>)</mml:mo> </mml:math> that blow up at one critical point of K . However, we prove also a nonexistence result of single-peaked solutions for the supercritical equation $(S_{+\\varepsilon})$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>S</mml:mi> <mml:mrow> <mml:mo>+</mml:mo> <mml:mi>ε</mml:mi> </mml:mrow> </mml:msub> <mml:mo>)</mml:mo> </mml:math> .","PeriodicalId":55333,"journal":{"name":"Boundary Value Problems","volume":"13 3","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Value Problems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13661-023-01789-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract This paper is devoted to studying the nonlinear problem with slightly subcritical and supercritical exponents $(S_{\pm \varepsilon}): \Delta ^{2}u-c_{n}\Delta u+d_{n}u = Ku^{ \frac{n+4}{n-4}\pm \varepsilon}$ (S±ε):Δ2u−cnΔu+dnu=Kun+4n−4±ε , $u>0$ u>0 on $S^{n}$ Sn , where $n\geq 5$ n≥5 , ε is a small positive parameter and K is a smooth positive function on $S^{n}$ Sn . We construct some solutions of $(S_{-\varepsilon})$ (S−ε) that blow up at one critical point of K . However, we prove also a nonexistence result of single-peaked solutions for the supercritical equation $(S_{+\varepsilon})$ (S+ε) .
抽象非线性问题》这篇文章devoted to studying有点subcritical和supercritical exponents (S_ {pm \ varepsilon}美元):\ ^{2}三角洲三角洲u-c_ {n} \我^ d_ {n} u + u = {\ frac {n + 4} {n-4的pm \ varepsilon}美元(S±ε):Δ2−c nΔu + d u n K u = u n + 4−4±ε,u>美元;u > 0美元;0美元在S ^ {n} $ n, n \ geq美元哪里5 n≥5美元,ε是a small积极和K是一个流畅的积极功能参数on S ^ {n} $ n美元。我们构造的一些解决方案(S_美元{- \ varepsilon}) (S−美元ε)那吹起来at一号连接point of K。,但是,我们也证明a nonexistence single-peaked解决方案》的论点supercritical equation (S_美元{\ varepsilon})美元(S +ε)。
期刊介绍:
The main aim of Boundary Value Problems is to provide a forum to promote, encourage, and bring together various disciplines which use the theory, methods, and applications of boundary value problems. Boundary Value Problems will publish very high quality research articles on boundary value problems for ordinary, functional, difference, elliptic, parabolic, and hyperbolic differential equations. Articles on singular, free, and ill-posed boundary value problems, and other areas of abstract and concrete analysis are welcome. In addition to regular research articles, Boundary Value Problems will publish review articles.