Xiaorong Wang , Chi Li , Yanru Shi , Zhenguo Zhang , Qingguo Chi , Panshi Wang
{"title":"Improvements in saline soil and the law of water-salt transport based on salt inhibition using MICP technology","authors":"Xiaorong Wang , Chi Li , Yanru Shi , Zhenguo Zhang , Qingguo Chi , Panshi Wang","doi":"10.1016/j.bgtech.2023.100055","DOIUrl":null,"url":null,"abstract":"<div><p>Soil desertification and salinization are the main environmental disasters in arid and semi-arid areas. It is of great significance to study the water - salt migration law of saline soil and propose corresponding water- salt regulation and control measures. Microbial-induced calcite precipitation (MICP) technology was proposed to improve saline soil based on salt inhibition, and the water–salt–heat coupling migration law and salt-frost heave deformation law of saline soil before and after improvement were studied using soil column model tests. XR1#, XR2#(Saline-alkali-tolerant mineralization bacteria isolated from saline soil) and <em>Sporosarcina pasteurii</em> were used in the MICP improvement and the effect of XR1# was the best. Under high-temperature evaporation, the water migration change rate, water loss rate, accumulated evaporation amount, and accumulated salt content of the improved soil columns within a depth range of 0–40 cm were reduced by an average of 53.6 %, 47.3 %, 69.5 %, and 40 %, respectively, compared with the untreated soil column. During low-temperature cooling, the characteristics of water-salt migration changed significantly, and the deformation of salt-frost heave decreased significantly. The water-salt content at the freezing point (−4.5 °C) changed from a cliff-like steep drop (untreated saline soil) to a slow decrease at environmental temperature (MICP-treated saline soil), and the amount of water crystallization decreased from 81 % to 56.7 % at −5 °C. At the end of the cooling process, the amount of salt-frost heaving on the surface of the soil columns decreased by an average of 62.7 %. Based on the measured data, a numerical simulation was conducted using the HYDRUS-1D model, which had good reliability and accurately simulated and predicted the law of water-salt migration in saline soil under the conditions of microbial solidification and improvement. MICP technology significantly reduced the change rate of water-salt migration and water evaporation in saline soil, hindered salt accumulation, and reduced salt-frost heave deformation, which effectively improved saline soil. The research results provide an important innovation and theoretical basis for the improvement of saline soil.</p></div>","PeriodicalId":100175,"journal":{"name":"Biogeotechnics","volume":"2 1","pages":"Article 100055"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949929123000554/pdfft?md5=099c25997a82191b6359b59f3b34fbae&pid=1-s2.0-S2949929123000554-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeotechnics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949929123000554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Soil desertification and salinization are the main environmental disasters in arid and semi-arid areas. It is of great significance to study the water - salt migration law of saline soil and propose corresponding water- salt regulation and control measures. Microbial-induced calcite precipitation (MICP) technology was proposed to improve saline soil based on salt inhibition, and the water–salt–heat coupling migration law and salt-frost heave deformation law of saline soil before and after improvement were studied using soil column model tests. XR1#, XR2#(Saline-alkali-tolerant mineralization bacteria isolated from saline soil) and Sporosarcina pasteurii were used in the MICP improvement and the effect of XR1# was the best. Under high-temperature evaporation, the water migration change rate, water loss rate, accumulated evaporation amount, and accumulated salt content of the improved soil columns within a depth range of 0–40 cm were reduced by an average of 53.6 %, 47.3 %, 69.5 %, and 40 %, respectively, compared with the untreated soil column. During low-temperature cooling, the characteristics of water-salt migration changed significantly, and the deformation of salt-frost heave decreased significantly. The water-salt content at the freezing point (−4.5 °C) changed from a cliff-like steep drop (untreated saline soil) to a slow decrease at environmental temperature (MICP-treated saline soil), and the amount of water crystallization decreased from 81 % to 56.7 % at −5 °C. At the end of the cooling process, the amount of salt-frost heaving on the surface of the soil columns decreased by an average of 62.7 %. Based on the measured data, a numerical simulation was conducted using the HYDRUS-1D model, which had good reliability and accurately simulated and predicted the law of water-salt migration in saline soil under the conditions of microbial solidification and improvement. MICP technology significantly reduced the change rate of water-salt migration and water evaporation in saline soil, hindered salt accumulation, and reduced salt-frost heave deformation, which effectively improved saline soil. The research results provide an important innovation and theoretical basis for the improvement of saline soil.