Robust Clustering with Normal Mixture Models: A Pseudo β-Likelihood Approach

IF 2 Q2 ECONOMICS
Soumya Chakraborty, Ayanendranath Basu, Abhik Ghosh
{"title":"Robust Clustering with Normal Mixture Models: A Pseudo β-Likelihood Approach","authors":"Soumya Chakraborty, Ayanendranath Basu, Abhik Ghosh","doi":"10.1016/j.ecosta.2023.10.004","DOIUrl":null,"url":null,"abstract":"As in other estimation scenarios, likelihood based estimation in the normal mixture set-up is highly non-robust against model misspecification and presence of outliers (apart from being an ill-posed optimization problem). A robust alternative to the ordinary likelihood approach for this estimation problem is proposed which performs simultaneous estimation and data clustering and leads to subsequent anomaly detection. To invoke robustness, the methodology based on the minimization of the density power divergence (or alternatively, the maximization of the β-likelihood) is utilized under suitable constraints. An iteratively reweighted least squares approach has been followed in order to compute the proposed estimators for the component means (or equivalently cluster centers) and component dispersion matrices which leads to simultaneous data clustering. Some exploratory techniques are also suggested for anomaly detection, a problem of great importance in the domain of statistics and machine learning. The proposed method is validated with simulation studies under different set-ups; it performs competitively or better compared to the popular existing methods like K-medoids, TCLUST, trimmed K-means and MCLUST, especially when the mixture components (i.e., the clusters) share regions with significant overlap or outlying clusters exist with small but non-negligible weights (particularly in higher dimensions). Two real datasets are also used to illustrate the performance of the newly proposed method in comparison with others along with an application in image processing. The proposed method detects the clusters with lower misclassification rates and successfully points out the outlying (anomalous) observations from these datasets.","PeriodicalId":54125,"journal":{"name":"Econometrics and Statistics","volume":"49 11","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.ecosta.2023.10.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 3

Abstract

As in other estimation scenarios, likelihood based estimation in the normal mixture set-up is highly non-robust against model misspecification and presence of outliers (apart from being an ill-posed optimization problem). A robust alternative to the ordinary likelihood approach for this estimation problem is proposed which performs simultaneous estimation and data clustering and leads to subsequent anomaly detection. To invoke robustness, the methodology based on the minimization of the density power divergence (or alternatively, the maximization of the β-likelihood) is utilized under suitable constraints. An iteratively reweighted least squares approach has been followed in order to compute the proposed estimators for the component means (or equivalently cluster centers) and component dispersion matrices which leads to simultaneous data clustering. Some exploratory techniques are also suggested for anomaly detection, a problem of great importance in the domain of statistics and machine learning. The proposed method is validated with simulation studies under different set-ups; it performs competitively or better compared to the popular existing methods like K-medoids, TCLUST, trimmed K-means and MCLUST, especially when the mixture components (i.e., the clusters) share regions with significant overlap or outlying clusters exist with small but non-negligible weights (particularly in higher dimensions). Two real datasets are also used to illustrate the performance of the newly proposed method in comparison with others along with an application in image processing. The proposed method detects the clusters with lower misclassification rates and successfully points out the outlying (anomalous) observations from these datasets.
正态混合模型的鲁棒聚类:一种伪β似然方法
与其他估计场景一样,在正常的混合设置中,基于似然的估计对于模型错误规范和异常值的存在是高度非鲁棒的(除了是一个不适定的优化问题)。针对该估计问题,提出了一种替代普通似然方法的鲁棒替代方法,该方法可以同时进行估计和数据聚类,并导致随后的异常检测。为了调用鲁棒性,在适当的约束条件下利用了基于密度功率散度最小化(或者,β-似然最大化)的方法。采用迭代重加权最小二乘方法来计算分量均值(或等价的聚类中心)和分量弥散矩阵的估计量,从而导致数据同时聚类。在统计和机器学习领域中,异常检测是一个非常重要的问题。通过不同设置下的仿真研究验证了该方法的有效性;与流行的现有方法(如k - mediids, TCLUST,修剪K-means和MCLUST)相比,它的性能具有竞争力或更好,特别是当混合成分(即簇)共享具有显著重叠的区域或外围簇存在较小但不可忽略的权重时(特别是在高维中)。用两个真实的数据集来说明新提出的方法与其他方法的性能以及在图像处理中的应用。该方法可以检测出错误分类率较低的聚类,并成功地指出这些数据集中的外围(异常)观测值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
10.50%
发文量
84
期刊介绍: Econometrics and Statistics is the official journal of the networks Computational and Financial Econometrics and Computational and Methodological Statistics. It publishes research papers in all aspects of econometrics and statistics and comprises of the two sections Part A: Econometrics and Part B: Statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信