MHD in a Cylindrical Shearing Box. II. Intermittent Bursts and Substructures in MRI Turbulence

IF 4.8 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Takeru K. Suzuki
{"title":"MHD in a Cylindrical Shearing Box. II. Intermittent Bursts and Substructures in MRI Turbulence","authors":"Takeru K. Suzuki","doi":"10.3847/1538-4357/acfb88","DOIUrl":null,"url":null,"abstract":"Abstract By performing ideal magnetohydrodynamical (MHD) simulations with weak vertical magnetic fields in unstratified cylindrical shearing boxes with modified boundary treatment, we investigate MHD turbulence excited by magnetorotational instability. The cylindrical simulation exhibits extremely large temporal variation in the magnetic activity compared with the simulation in a normal Cartesian shearing box, although the time-averaged field strengths are comparable in the cylindrical and Cartesian setups. Detailed analysis of the terms describing magnetic energy evolution with “triangle diagrams” surprisingly reveals that in the cylindrical simulation the compression of toroidal magnetic field is unexpectedly as important as the winding due to differential rotation in amplifying magnetic fields and triggering intermittent magnetic bursts, which are not seen in the Cartesian simulation. The importance of the compressible amplification is also true for a cylindrical simulation with tiny curvature; the evolution of magnetic fields in the nearly Cartesian shearing box simulation is fundamentally different from that in the exact Cartesian counterpart. The radial gradient of epicyclic frequency , κ , which cannot be considered in the normal Cartesian shearing box model, is the cause of this fundamental difference. An additional consequence of the spatial variation of κ is continuous and ubiquitous formation of narrow high-density (low-density) and weak-field (strong-field) localized structures; seeds of these ring gap structures are created by the compressible effect and subsequently amplified and maintained under the marginally unstable condition regarding “viscous-type” instability.","PeriodicalId":50735,"journal":{"name":"Astrophysical Journal","volume":"5 1","pages":"0"},"PeriodicalIF":4.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/acfb88","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract By performing ideal magnetohydrodynamical (MHD) simulations with weak vertical magnetic fields in unstratified cylindrical shearing boxes with modified boundary treatment, we investigate MHD turbulence excited by magnetorotational instability. The cylindrical simulation exhibits extremely large temporal variation in the magnetic activity compared with the simulation in a normal Cartesian shearing box, although the time-averaged field strengths are comparable in the cylindrical and Cartesian setups. Detailed analysis of the terms describing magnetic energy evolution with “triangle diagrams” surprisingly reveals that in the cylindrical simulation the compression of toroidal magnetic field is unexpectedly as important as the winding due to differential rotation in amplifying magnetic fields and triggering intermittent magnetic bursts, which are not seen in the Cartesian simulation. The importance of the compressible amplification is also true for a cylindrical simulation with tiny curvature; the evolution of magnetic fields in the nearly Cartesian shearing box simulation is fundamentally different from that in the exact Cartesian counterpart. The radial gradient of epicyclic frequency , κ , which cannot be considered in the normal Cartesian shearing box model, is the cause of this fundamental difference. An additional consequence of the spatial variation of κ is continuous and ubiquitous formation of narrow high-density (low-density) and weak-field (strong-field) localized structures; seeds of these ring gap structures are created by the compressible effect and subsequently amplified and maintained under the marginally unstable condition regarding “viscous-type” instability.
圆柱形剪切箱中的MHD。2MRI湍流中的间歇爆发和亚结构
摘要采用改进的边界处理方法,在无分层圆柱剪切箱中进行弱垂直磁场的理想磁流体动力学(MHD)模拟,研究了磁旋不稳定性激发的理想磁流体湍流。尽管时间平均场强在圆柱形和直角形条件下是相当的,但与正常笛卡尔剪切箱中的模拟相比,圆柱形模拟在磁场活动方面表现出极大的时间变化。对用“三角图”描述磁能演化的术语的详细分析令人惊讶地发现,在圆柱形模拟中,环形磁场的压缩出乎意料地与由于差分旋转而产生的绕组在放大磁场和触发间歇性磁暴方面一样重要,这在笛卡尔模拟中是看不到的。可压缩放大的重要性也适用于具有微小曲率的圆柱形模拟;近笛卡儿剪切箱模拟中的磁场演化与精确笛卡儿剪切箱模拟中的磁场演化有着根本的不同。正常笛卡尔剪切箱模型中不能考虑的周转频率κ的径向梯度是造成这种根本差异的原因。κ空间变化的另一个结果是连续和无处不在的狭窄高密度(低密度)和弱场(强场)局部结构的形成;这些环隙结构的种子是由可压缩效应产生的,随后在“粘滞型”不稳定的边缘不稳定条件下被放大和维持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astrophysical Journal
Astrophysical Journal 地学天文-天文与天体物理
CiteScore
8.40
自引率
30.60%
发文量
2854
审稿时长
1 months
期刊介绍: The Astrophysical Journal is the foremost research journal in the world devoted to recent developments, discoveries, and theories in astronomy and astrophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信