{"title":"On the Escape of Low-frequency Waves from Magnetospheres of Neutron Stars","authors":"Ephim Golbraikh, Yuri Lyubarsky","doi":"10.3847/1538-4357/acfa78","DOIUrl":null,"url":null,"abstract":"Abstract We study the nonlinear decay of the fast magnetosonic (fms) into the Alfvén waves in relativistic force-free magnetohydrodynamics. The work has been motivated by models of pulsar radio emission and fast radio bursts (FRBs), in which the emission is generated in neutron star magnetospheres at conditions when not only the Larmor but also the plasma frequencies significantly exceed the radiation frequency. The decay process places limits on the source luminosity in these models. We estimated the decay rate and showed that the phase volume of Alfvén waves available for the decay of an fms wave is infinite. Therefore, the energy of fms waves could be completely transferred to the small-scale Alfvén waves not via a cascade, as in the Kolmogorov turbulence, but directly. Our results explain the anomalously low radio efficiency of the Crab pulsar and show that FRBs could not be produced well within magnetar magnetospheres.","PeriodicalId":50735,"journal":{"name":"Astrophysical Journal","volume":"9 4","pages":"0"},"PeriodicalIF":4.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/acfa78","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract We study the nonlinear decay of the fast magnetosonic (fms) into the Alfvén waves in relativistic force-free magnetohydrodynamics. The work has been motivated by models of pulsar radio emission and fast radio bursts (FRBs), in which the emission is generated in neutron star magnetospheres at conditions when not only the Larmor but also the plasma frequencies significantly exceed the radiation frequency. The decay process places limits on the source luminosity in these models. We estimated the decay rate and showed that the phase volume of Alfvén waves available for the decay of an fms wave is infinite. Therefore, the energy of fms waves could be completely transferred to the small-scale Alfvén waves not via a cascade, as in the Kolmogorov turbulence, but directly. Our results explain the anomalously low radio efficiency of the Crab pulsar and show that FRBs could not be produced well within magnetar magnetospheres.
期刊介绍:
The Astrophysical Journal is the foremost research journal in the world devoted to recent developments, discoveries, and theories in astronomy and astrophysics.